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ABSTRACT Objective: Many introductory statistics books cover 

the mean-median inequality, which states that if the skewness value is 
positive/negative, the mean is greater/less than the median. However, 

this textbook rule is often violated especially when one tail is long 

and the other is heavy. The purpose of this paper is to propose a re-

finement that solves the problem to a meaningful extent by bringing 

the area to the left and right of the median into the picture for discrete 

data, where violations are more common and severe. The improved 
version is simple and effective enough to replace the existing rule. 

Material and Methods: Three distributional settings were utilized 

for illustration: The Poisson, binomial, and discretized normal 
mixture distributions. A simulation study was devised to assess the 

relative performances of the current and new rules for count data 
under the Poisson distribution assumption. Results: The new rule 

adds a simple layer to the current rule: For right skew, the mean is 

greater/less than the median if the area to the left of the median is 
less/greater than the area to the right. Similarly, for left skew, the 

mean is less/greater than the median if the area to the left the median 

is greater/less than the area to the right. In other words, the new com-
ponent comes in the form of a comparative area restriction. Conclu-

sion: All three distributional examples lead to the same conclusion: 

The proposed version is associated with substantially better results. 
Although it is not a complete solution, it is a serious improvement. 

 

Keywords: Tail behavior; introductory statistics; symmetry;  

                    mean; median  

ÖZET Amaç: Birçok istatistiğe giriş kitabı, çarpıklık değeri pozi-

tif/negatif ise ortalamanın ortancadan büyük/küçük olacağını ifade 
eden, ortanca-ortalama eşitsizliğini kapsar. Fakat bu kural özellikle 

bir kuyruk uzun ve diğer kuyruk ağır olduğunda ihlal edilmektedir. 

Bu çalışmanın amacı, ihlallerin daha yaygın ve şiddetli olduğu ke-

sikli (süreksiz) veriler için, ortancanın sol ve sağ tarafındaki alanı 

hesaplamaya dahil ederek, problemi anlamlı ölçüde çözen bir iyi-

leştirme önermektir. Geliştirilen kural, mevcut kuralın yerini alacak 
kadar basit ve etkilidir. Gereç ve Yöntemler: Örnek olarak üç 

dağılım ayarı kullanılmıştır: Poisson, binom ve kesiklileştirilmiş 

normal karışım dağılımları. Poisson dağılımı varsayımı altında 
sayma verileri için mevcut ve yeni kuralların göreceli 

performanslarını değerlendirmek üzere bir simülasyon çalışması 
tasarlanmıştır. Bulgular: Yeni kural mevcut kurala basit bir 

katman ekler: Sağ çarpıklık için, ortancanın solundaki alan sağın-

daki alandan daha küçükse/büyükse, ortalama ortancadan daha 
büyük/küçüktür. Benzer şekilde, sol çarpıklık için, ortancanın 

solundaki alan sağındaki alandan daha büyükse/küçükse, ortalama 

ortancadan daha küçük/büyüktür. Başka bir deyişle, yeni bileşen 
karşılaştırmalı bir alan kısıtlaması şeklinde gelir. Sonuç: Her üç 

dağılımsal örnek de aynı sonuca varmaktadır: Önerilen versiyon 

büyük ölçüde daha iyi sonuçlar çıkarmıştır. Bu tam bir çözüm ol-
masa da, ciddi bir gelişmedir. 

 

Anahtar kelimeler: Kuyruk davranışı; istatistiğe giriş; simetri;  

                                  ortalama; ortanca  
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Skewness is a measure of distributional asymmetry of the probability distribution of a real-valued ran-

dom variable about its mean. It tells us in what way the individual values deviate from the mean. In particu-

lar, it indicates if the larger deviations are associated with the larger or smaller values in the data set, corre-

sponding to positive and negative skew, respectively. The qualitative interpretation of skew is based on 

the reverse direction that the curve appears to be leaning. For a unimodal distribution, positive skew 

implies that the tail on the right side of the probability density function is longer than the tail on the left 

side (the mass of the distribution is concentrated on the left), whereas the opposite relationship holds for 

negative skew. For symmetric distributions, the skewness value is zero. The converse of this statement is 

not necessarily true, because asymmetries such as one tail being long but thin and the other being short but 

heavy may even out. Right skewness is more common in real life especially when observed or measured 

values have an intrinsic lower limit and no obvious upper limit (e.g., cost of living, human weight, time to 

completion, income), with most data points being closer to the minimum value rather than the maximum. 

Left skewness is encountered when high values are in majority and low values tail off to the left (e.g., 

score distribution on an easy exam). In discrete and multimodal continuous distributions,  the sign of 

skewness is difficult to interpret. 

A textbook rule often taught in basic statistics courses is that the mean is to the right of the  

median under positive (right) skew, and to the left of the median under negative (left) skew. It is  

possible to express this basic premise in different ways: The mean lies toward the direction of skew  

(the longer tail) relative to the median for skewed distributions;
1
 the mean is farther out in the long tail 

than is the median.
2
 The current rule should be regarded as a general trend, not a set-in-stone law since 

it is prone to violations, with an unacceptably high failure rate.
3
 It may not even be fair to call it a rule. 

This paper is motivated by the need of constructing a new version that represents a significant e n-

hancement. 

We go with the most common definition of skew, which is predicated upon the third standardized mo-

ment                 where   is a random variable with mean   and standard deviation    Some 

alternatives have also appeared in the literature.
4-6

 In theory, it can take any value on the real line, but it is 

usually smaller than 5 in absolute value in most cases. To estimate skewness from a sample of   

observations, one could use a simple estimator    
 

 
             

   ,          where    and   are the 

sample mean and standard deviation, respectively. An unbiased estimator can be obtained by replacing  
 

 
  by  

 

          
 .

7
 Unbiasedness is immaterial for the purposes of this work as we are only interested in the sign of 

skew as far as the textbook rule of interest is concerned. 

Continuous violations are mild and rare, the current rule is good enough for the most part.
4
 It is 

known to hold within the Pearson family. Even under this family, infractions can happen in small sam-

ples. Violations are more common and severe for discrete data. That is why we direct our attention to 

the discrete case, where the median may not (and in majority of cases, does not) split the data in half. 

Violations occur when the area (the proportion of data points) to the left and right of the median are un-

equal in a certain way. For right skew, we typically detect a violation when the area to the left of the 

median is larger than the area to the right, because one tail is long (the right tail) and the other tail (the 

left one) is heavy. The opposite connection is valid for left skewness. The remainder of the paper 

focuses on formulating a new criterion for the discrete case, taking this observa tion into consideration. 

The crux of the proposed rule is the relative magnitudes of the proportion  of data to the left and right of 

the median. We capitalize on the direction of this area inequality for a refined variation of the current 

textbook rule. 
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    MATERIAL AND METHODS 

Let us re-iterate the current rule: For right/left-skewed data, the mean is greater/less than the median. This 

makes a great deal of sense to a beginner since its conceptualization, visualization, and contextualization are 

straightforward. The problem is that it can easily get violated for discrete data. 

The new rule adds a simple layer to the current rule: For right skew, the mean is greater/less than the 

median if the area to the left of the median is less/greater than the area to the right. Similarly, for left skew, 

the mean is less/greater than the median if the area to the left the median is greater/less than the area to the 

right. In other words, the new component comes in the form of a comparative area restriction. When this re-

striction is made a part of the rule in an attempt to improve the process, by and large the direction of the 

mean-median inequality corrects itself. To re-express this symbolically, let     and   be the mean, median, 

and difference between the area to the left      and right     . For         if           and 

    if    . Similarly, for                    and     if     . This expansion fixes a solid 

portion of violations. The downside is that it creates a new violation albeit to a much lesser extent. The area 

argument does not offer a perfect solution, but it substantially reduces the number of violations in a convinc-

ing manner, as demonstrated below. 

Three distributional settings were utilized for illustration: The Poisson, binomial, and discretized 

normal mixture distributions. The Poisson distribution with the rate parameter     is a great place to 

start testing the suggested rule. Although skew is always positive (      ), the mean becomes less than 

the median if the decimal part of the rate parameter is greater than             3 More specifically, the 

median is approximately     
       

    where     is the largest integer that is less than  .
8
 A simula-

tion study was devised to assess the relative performances of the current and new rules for count data un-

der the Poisson distribution assumption. The integer part of the rate parameter was chosen to be 0, 2 and 5 

and the decimal part was assumed to vary between 0.50 and 0.89 with increments of 0.01 (40 different 

values for each of the three ranges that only differ in the integer portion are denoted by       and   ; 

these lower and upper bounds in the decimal range were selected so that they almost equidistant from 

0.693) Three sets of sample sizes             = (200,1000,10000) were used, leading to 3*3=9 sample 

size-range combinations. The experiment was performed for N=100 simulation replicates for each   value, 

making the total number of simulated data sets 100 x 40 x 9=36000 whose sample means and medians 

were calculated and compared, and whether or not violations occurred with respect to the current and new 

rules were determined. 

    RESULTS 

Figure 1 is concerned with 4000 points that come out of the      combination. The points on the left and 

right parts correspond to legitimate cases and violations, respectively, by to the current rule, with the area 

difference   on the   axis. Violations go away with the introduction of area condition (1948 violations are 

removed, corresponding to 48.7% of cases). The disadvantage is that a new sort of violation ensues, but it 

carries far less negative connotations: Some points with a positive   (positive differences on the left part of 

the graph) go from legitimate to violated. The magnitude of the problem is much smaller though (26 new 

violations are emerged, corresponding to 0.65% of cases). This complication becomes nonexistent in larger 

samples, as we will see shortly. 
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FIGURE 1: The area difference versus the violation status by the current rule. 

 

Given the sign of skew, connecting the area difference to the mean-median inequality removes an over-

whelming majority of the violations with a minor glitch. The good news is that the benefits of the new rule 

far outweigh the losses, giving rise to an effectively working system. Figure 2 shows how well the improved 

version operates, along with a clearer demonstration of the above-mentioned problem across six range-

sample size combinations, in which            . The area differences are sorted across the violation status 

by the current rule. Taken as a matrix plot, rows and columns stand for the sample size and range, 

respectively. The thick curve in plot [1, 1]        represent the violated cases under the current rule, where 

the area difference is positive for a right-skewed distribution. The new rule moves these points to the valid 

territory. The points on the regular curve denote legitimate cases under the current rule. They mostly fall into 

the region where the area difference is negative; the ones that are above the   axis are the new violations. In 

plots [1, 2]        and [1, 3]       , we see the same trend (a large number of violations under the current 

rule are removed in exchange for a small number of new violations under the new rule) to a slightly worse 

degree. Another minor setback that can be seen in plot [1,3] is that a very small number (only three to be 

exact) of current rule violations remain (the ones with a negative area difference). We see a spotless trend in 

the second row of the plots that correspond to     : All violations are contained, and no new violations 

are introduced. The large sample behavior (    ) is no different from this: Violations go away completely. 

The violation rate across all nine sample size-range scenarios are graphed in Figure 3, where the thin curve 

stands for the current rule. The violation percentage is fluctuating around 50% (ranging from 45% to 55%, 

which is an annoyingly high proportion) under the current rule, whereas it goes down significantly for 

     (0.65%, 1.97% and 5.52% for   ,    and   , respectively; naturally in harmony with Figure 2 

trends) and entirely vanishes when   is larger, with the new adjustment. 
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FIGURE 2: The sorted area difference with respect to the violation status via the current rule across six sample size-range combinations, where the thick 

curve represents removed violations by the new rule. 

 

 

FIGURE 3: An overall comparison graph in the Poisson example regarding the per cent violation for nine sample size-range combinations. 
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Our second illustration is drawn from the binomial distribution with the sample size ( ) and proportion 

( ) parameters, which could be left or right-skewed depending on the value of   (notice the slight change in 

notation, in correspondence with the established convention, here   is the sample size parameter, the number 

of data points is now     ). The skewness expression is given   
    

        
. Skew is negative for       

and positive for      . If    is an integer, then the mean (µ) and median ( ) coincide. The median is 

equal to           in cases when either          or         or                    except 

for the case when       and   is odd.
9
 Three sample sizes  = (2, 3, 4) and 81 values for  , ranging from 

0.10 to 0.90 with increments of 0.01 with         and       simulation replicates for each (n, p) 

combination were harnessed. Figure 4 is a 2 x 2 graph that shows the per cent violation across 8100 

simulated data sets for each of the three specific n's as well as the aggregated one, under the current (regular 

curve) and new (thick curve) rules. In the upper left graph (n=2), the standard (current) rule fails miserably 

especially when          . Here is why: When          ,          and     because 

             by Kaas and Buhrman (1980). It is a violation because     when    . Similarly, when 

      ,     although    ,           and     because            . When      , 

    the sample mean can easily move from one side to another. In the upper right graph (   ), we see a 

severe violation by the current rule around        and         by the same logic. The lower left graph 

(   ) tells a fairly compatible story: the mean is on the wrong side of the median for the values around 

      , 0.45, 0.55 and 0.79. Incorporating the area restriction to the rule yields much fewer violations for 

individual levels of all three n's (and not surprisingly the overall picture, see the lower right graph). The new 

variation's performance is markedly better, suggesting that the new rule works properly regardless of the sign 

of skew. 

 

FIGURE 4: The violation percentages by the current and new rules for three different   values, and the aggregated version in the binomial example. 
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For multimodal distributions, the direction of skew is not immediately obvious by visual inspection of 

the underlying shape. To gauge the plausibility of the improved rule outside the realm of unimodal 

distributions, we employ a normal mixture density before rounding the variates to the nearest integer for four 

bimodal situations. A normal mixture distribution can be formulated as         
               

   

with the mixing proportion  . Depending on the choice of parameter values, it could take different shapes. 

As can be seen in Figure 5,                  are chosen to be (0.5,0,1,3,1) (upper left), (0.6,0,0.5,2,0.5) 

(upper right), (0.3,0,1,3,1) (lower left), and (0.5,0,1,4,1) (lower right) that correspond to different bimodal 

settings with respect to the height of the modes and the distances between them. The characteristics of the 

discretized data are obviously different, but the bimodal shapes are not distorted. The number of data points 

    are set to range from 20 to 2000 with increments of 20 (100 different values with N=100 simulation 

replicates for each level of   . In Figure 6, we plot the violation percentages by the current (regular curves) 

and new rules (thick curves) for each set of specifications. The new rule is the clear winner in all four cases. 

In addition, most statistical procedures give more stable and predictable results as n gets larger, and the 

suggested rule reflects this general tendency, whereas the current rule shows erratic, idiosyncratic behavior. 

With a few exceptions (when n is small), the suggested variation turns out to be uniformly superior to the 

existing rule. The number of violations becomes either nonexistent (plot [1,2]) or negligibly small (plots 

[1,1] and [2,1]) or acceptably low (plot [2,2]). 

 

FIGURE 5: Four bimodal shapes of the normal mixture distribution. 
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FIGURE 6: Comparison of the violation percentages for 100 different sample sizes in the discretized normal mixture example. 

 

All three distributional examples lead to the same conclusion: The proposed version is associated with 

substantially better results. No, it is not a complete solution, but it is a serious improvement.  

The reported results are reproducible and the R code used in this manuscript is publicly accessible at 

http://demirtas.people.uic.edu/computer_code_mean_median_paper.txt 
10

 

    DISCUSSION 

Here are some points that deserve mention in no particular order: (a) While the mode is occasionally pre-

sented as a part of the current rule in some books
11

 -the median is being between the mean and the mode-, it 

is out of the scope of this paper since the mode is not the gist of the textbook rule despite its importance as a 

statistical quantity. This manuscript concentrates on the mean-median inequality, and no attention is paid to 

the mode. (b) The area to the left or right may be zero if the median is sitting on an extreme category, but it 

does not change the nature or effectiveness of the new rule, which hinges upon the difference. (c) Skew is 

undefined for some distributions (e.g., Cauchy), and it may be infinite (e.g.,               ). 

Furthermore, it could be very sensitive to outlying data points as it involves cubes, but these complications 

equally apply to the current and proposed rules. (d) The sign of the sample skew may not conform to what 

the theory suggests (e.g., a sample that is based on Poisson distribution may have a negative skew especially 

when the number of data points is small), but this does not invalidate or affect the new rule in any way. (e) 

One can argue that the mean may not always be a sensible measure for discrete data (e.g., ordinal data). This 

is true, but again, it is not a problem that is originated by the new rule. (f) The median usually does not split 

the data in half for discrete data (ironically, this is the engine of the new rule), so the way we interpret it is a 

bit different from the continuous case. Nevertheless, no matter how we look at it, the median is still the 

number               with or without ties. (g) Monotonic skew-reducing transformations (e.g., square-root, 

logarithmic) do not change the relative positions of the mean and median, so they are irrelevant to this work. 

(h) The use of alternative skew formulas does not provide any extra utility in terms of reducing the 
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discrepancy between what the current rule suggests and reality. (i) Generalizability of the presented results 

may be considered doubtful by some in the absence of a mathematically cogent proof. However, the out-

comes are suggestive and compelling enough for us to take a point of advocacy for the enhanced rule. The 

proposed improvement is not tied to any distributional shape or sample size assumptions, which constitutes a 

major plus in terms of broad applicability across a rich spectrum of discrete data contexts. 

As discussed before, violations in the continuous case are mild; distortions on the comparative magni-

tudes of the mean and median are typically indiscernible. Nevertheless, the problem could be solved by 

incorporating left and right kurtosis (computed for the two halves of the data), reflecting the peakedness or 

elongation behavior at the tails.
12

 Given the low severity and frequency of the problem, trying to come up 

with a corrective mechanism may not be worth the effort, and it would probably be too complicated to cover 

at a beginner's level course. Of note, the relative superiority of the new rule becomes more pronounced if the 

number of categories is small. If it is large, a discrete distribution nearly becomes an approximation to a con-

tinuous one, producing not so many violations under the existing rule. 

The proposed rule is not meant to be miraculous or free of violations, as it does not always work; 

counter examples can be found (as mentioned in Section 2) or constructed. It is difficult to imagine that there 

exists a rule that works well in all situations including the small sample cases in this context. However, it is a 

considerable improvement over the current rule, as shown in a few distributional settings. The newly added 

component is the difference between the areas to the left and right of the median. It is conceptually and com-

putationally straightforward enough to be the new textbook rule. Formulating a better guideline concerning 

the mean-median inequality is useful to address a frequently encountered violation in practice; it has some 

significance in teaching of elementary statistics courses. 

    CONCLUSION 

We can go bold and embrace a larger augmentation strategy by combining these two rules, which could be 

stated as (a) Go with the current rule, and (b) If          it fails, go with the new rule. This pairing gives 

nearly violation-proof results; it solves the problem without creating a new one. The two-stage rule may feel 

a little contrived and unnatural, however, it is hard to contradict the assertion that says 

                         . On a more positive note, we believe that the proposed refinement has 

potential to be adopted by the authors of the introductory books, with or without this sequential angle. 
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