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ABSTRACT Objective: The main goal in the early phase of 

drug discovery studies is to detect small drug molecules that 
show activity against a specific receptor. For this purpose, small 

drug molecules are classified as actives or inactives by 

performing high-throughput screening (HTS) experiments. The 
datasets obtained from these experiments are uploaded to the 

PubChem database. This database contains more than one million 

bioassays that are obtained through HTS experiments. 
Alternatively, classification models can be developed using 

datasets in the PubChem database. Material and Methods: In 

this study, we obtained 5 datasets with different degrees of 

imbalance structure from the PubChem database. We trained 

these datasets using deep neural networks (DNN) for the 
classification of small drug molecules as actives or inactives. The 

test set performances of DNN models were compared with the 

support vector machines (SVM) and random forest (RF) 
algorithms. Results: The DNN achieved better balanced accuracy 

(minimum-maximum: 0.764-0.865), recall (minimum-maximum: 

0.630-0.823), F1-score (minimum-maximum: 0.496-0.843) and 
Matthews correlation coefficient (minimum-maximum: 0.439-

0.721) compared to the SVM and RF. Conclusion: Our results 

showed that the DNN is a well-performed machine learning 
algorithm that can be in the early phase of drug discovery studies 

since it performs better than traditional machine learning 

algorithms in the case of imbalanced class structures. 
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ÖZET Amaç: İlaç keşif çalışmalarının erken evresindeki temel 

amaç, belirli bir reseptöre karşı aktivite gösteren küçük ilaç 
moleküllerini tespit etmektir. Bu amaçla küçük ilaç molekülleri, 

yüksek verimli tarama [high-throughput screening (HTS)] deneyleri 

gerçekleştirilerek aktif veya inaktif olarak sınıflandırılır. Bu 
deneylerden elde edilen veri setleri PubChem veri tabanına 

yüklenir. Bu veri tabanı, HTS deneyleri yoluyla elde edilen 1 

milyondan fazla biyo-tahlil veri setini içerir. Alternatif olarak, 
PubChem veri tabanındaki veri kümeleri kullanılarak sınıflandırma 

modelleri de geliştirilebilir. Gereç ve Yöntemler: Bu çalışmada, 

PubChem veri tabanından farklı derecelerde dengesizlik yapısına 

sahip 5 adet veri seti elde ettik. Bu veri setlerini, küçük ilaç 

moleküllerinin aktif veya inaktif olarak sınıflandırılması için derin 
sinir ağları [deep neural networks (DNN)] kullanarak eğittik. DNN 

modellerinin test seti performansları, destek vektör makineleri 

[support vector machines (SVM)] ve rastgele orman [random forest 
(RF)] algoritmaları ile karşılaştırılmıştır. Bulgular: DNN modeli, 

dengeli doğruluk oranı (en küçük-en büyük: 0.764-0.865), 

duyarlılık (en küçük-en büyük: 0.630-0.823), F1-skoru (en küçük-
en büyük: 0.496-0.843) ve Matthews korelasyon katsayısı (en 

küçük-en büyük: 0.439-0.721) açısından SVM ve RF’den daha iyi 

performans göstermiştir. Sonuç: Sonuçlarımız DNN’nin dengesiz 
sınıf yapıları durumunda, klasik makine öğrenimi algoritmalarından 

daha iyi performans gösterdiğini, bu nedenle ilaç keşif 

çalışmalarının erken aşamasında iyi performans gösterebilen bir 
makine öğrenimi algoritması olduğunu ortaya koymuştur. 
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The new drug development is both a costly and time-consuming process. A new drug development 

study may take over 15 years and maybe spent over a billion dollars. Fortunately, the time and cost of new 

drug development studies considerably decreased with the rational drug design approach. This approach 

aims to find the 3-dimensional structure of a receptor (protein) that is thought to cause disease and reveal its 

active region. Thus, the drug molecule to be synthesized will have the highest chance to bind to this active 

region of the receptor. Before starting a drug discovery study, it is necessary to screen a huge number of 

chemical molecules. For this purpose, a high-throughput screening (HTS) experiment is performed to 

identify the activities of chemical molecules against a particular receptor or enzyme.
1
 The molecules that 

show activity as a result of the HTS experiment are called lead compounds. These lead compounds are then 

optimized and passed on to pre-clinical trials (i.e., animal experiments). After the pre-clinical trials are 

successfully completed, the clinical trials phase begins. These trials consist of 3 stages: Phase I, Phase II, and 

Phase III. Upon successfully completing Phase III, the new drug is submitted for the approval of the 

regulatory agency (such as Food and Drug Administration or European Medicines Agency). Finally, the 

approved new drug is ready to be placed on the market.  

Alternatively, a computational method, called virtual screening (VS), can be used to screen drug 

molecules. In the VS, a large number of molecules in chemical libraries are computationally screened against 

a specific receptor or enzyme, and molecules that are predicted to well bind to this specific receptor or 

enzyme are experimentally tested.
2
 In the last 2 decades, various machine learning methods have been 

extensively used for classification or activity prediction purposes. One of the first studies where machine 

learning was used in drug discovery was carried out by Sadowski and Kubinyi.
3
 In this study, artificial 

neural networks (ANN) were used for the classification of drug molecules. Other studies compared 

performances of support vector machines (SVM) and ANN algorithms, and revealed that SVM outperformed 

ANN.
4,5

 Korkmaz et al. investigated the effects of different feature selection methods on the SVM 

performance.
6
 In another study, Korkmaz et al. used 23 different machine learning algorithms and developed 

a web-tool to classify drug molecules using the ten best-performed methods.
7
 Other methods including, 

random forest (RF), naive Bayes (NB), Bayesian neural networks and k-nearest neighbors (kNN) are also 

used to classify active and inactive molecules in drug discovery studies.
8,9

 

Recently, deep neural networks (DNN) have performed well in drug discovery studies. A DNN model is 

used to estimate quantitative structure-activity relationships and performed better than the RF model.
10

 In 

another study, the DNN model was used as a multitask learning approach to estimate compound toxicity.
11

 

Similarly, multitask learning using the DNN is applied to numerous data sets [PubChem BioAssay (PCBA), 

maximum unbiased validation (MUV), A Database of Useful Decoys: Enhanced (DUD-E), The Toxicology 

in the 21
st
 Century (Tox21)].

12
 Other studies focused on comparing the performance of deep learning models 

with other classical machine learning algorithms, including SVM, RF, NB, and kNN.
13,14

 Korkmaz explored 

the factors affecting the DNN performance and found that the learning rate, batch size, and level of 

imbalance significantly affect the performance of the model.
15

 In another study, Korkmaz found that 

balancing the classes prior to the training increased the performance of the DNN.
16

 

Since VS is a computational filter that reduces the size of the chemical library to be experimentally 

screened, it can reduce the time and cost of finding lead compounds compared to the HTS method. Today, 

experimentally obtained data on drug molecules using the HTS method are uploaded to freely accessible 

databases. One of the largest databases containing drug molecules is the PubChem database. However, the 

bioassays in the PubChem, which were obtained by the HTS experiment, are usually imbalanced. That 

means the number of inactive molecules is significantly larger than the number of active molecules. It is well 

known that this imbalanced nature of datasets negatively affects the classification performance of traditional 

machine learning algorithms.  

Here, we obtained 5 different data sets with different levels of imbalance structure from the PubChem 

database. Traditional machine learning methods, including SVM and RF, are frequently used in the literature 
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to classify small drug molecules. However, these algorithms cannot perform well in imbalanced data 

structures. Recently, DNN has performed well in many areas and outperformed traditional machine learning 

methods such as SVM and RF. In this study, we aimed to train the DNN model using imbalanced datasets 

obtained from the PubChem database and compare its test set performances with SVM and RF. 

    MATERIAL AND METHODS 

DEEP NEURAL NETWORKS  

DNN contain multiple nonlinear hidden layers between input and output layers.
17

 Using these hidden layers 

and optimizable parameters, the DNN can learn high-dimensional relationships.
18

 The training process of a 

DNN algorithm can be summarized as follows: (i) First, random values are used to set the weights. (ii) Then, 

the DNN predictions and true classes are compared to calculate the loss score. (iii) Next, the 

backpropagation algorithm is used to calculate the derivatives by applying the chain rule.
19,20

 (iv) Using an 

optimization algorithm (i.e., gradient descent algorithm) and the resulting derivatives, the weights are 

modified slightly in the correct direction to reduce the loss. (v) Finally, the steps between ii and iv are 

iteratively repeated to minimize the loss score. As a result, a DNN model with the lowest loss score, which 

makes the predictions as close to true classes as possible, is trained.
21

 

SUPPORT VECTOR MACHINES  

SVM is a classification algorithm explicitly designed to solve the classification problem. The SVM has a 

very high generalization performance, and it can handle high-dimensional data.
6
 The SVM is developed by 

Cortes and Vapnik based on statistical learning theory and the principle of minimizing structural risk.
22

 The 

SVM algorithm aims to find a hyperplane that can optimally separate the distance between support vectors 

belonging to different classes.
22

 Suppose the classification problem cannot be solved linearly. In that case, 

the SVM tries to find the optimal margin between classes in a high dimensional space by mapping the 

nonlinear sample space to a high dimension where the samples can be separated linearly.
6 

 

RANDOM FOREST  

RF is a decision tree-based machine learning method developed by Breiman.
23

 The RF is an ensemble 

learning method developed for both classification and regression. The RF can be used in high-dimensional 

complex data structures. In the RF, trees are created with the Classification and Regression Tree algorithm, 

and these trees are not pruned. During the creation of each tree, a random subset of variables is chosen 

among the input variables, and those with the best split results are selected. This algorithm uses the 

information gain or Gini index to decide which variables should be used to split the data. The trees are 

evaluated separately, and the final classification result is calculated by the majority vote of the estimates 

obtained by each three. 

DATA SETS 

We used 5 data sets that are obtained from the PubChem. The number of active, inactive, and toal molecules 

in each data set are given in Table 1. 
 

TABLE 1: The characteristics of the bioassay data sets used in the study. 
 

Data set 
Number of active 

molecules 
Number of inactive 

molecules 
Total number of 

molecules 
Active/inactive 

ratio 

AID652178 178 897 1,075 1:5 

AID1053187 420 1,172 1,592 1:3 

AID1053196 231 2,058 2,289 1:9 

AID1159608 624 637 1,261 1:1 

AID115909 717 1,070 1,787 1:1.5 
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1) AID652178: This bioassay was created for a transmembrane domain receptor (GQ-linked G protein-

coupled receptors M1 Muscarinic receptor), which significantly affects the treatment of Alzheimer’s disease 

and schizophrenia-associated cognitive degeneration. This bioassay data set includes a total of 1,075 

compounds (178 actives and 897 inactives). 

2) AID1053187: This bioassay data were generated for the muscarinic M1 receptor and included results 

from different HTS experiments (AID628, AID677, AID859, AID860). This bioassay data set consists of 

1,592 compounds (420 actives and 1,172 inactives). 

3) AID1053196: This bioassay was developed for choline transporter inhibitors and included results 

from different HTS experiments (AID488975, AID493221, AID504840, AID588401, AID493222, 

AID602208, AID49322). This bioassay data set contains a total of 2,289 compounds (231 actives and 2,058 

inactives). 

4) AID1159608: This bioassay data was created for antagonists of the neuropeptide Y receptor Y2 and 

included results obtained from different HTS experiments (AID793, AID1257, AID1256, AID1279, 

AID1272, AID2210, AID2212, AID2224). This bioassay data set includes a total of 1,261 compounds (624 

actives and 637 inactives). 

5) AID115909: This bioassay data were generated for esters and lactones of phenolic amino carboxylic 

acids as prodrugs for iron chelation. This bioassay data set consists of 1,787 compounds (717 actives and 

1,070 inactives). 

PERFORMANCE MEASURES 

The following performance measures are calculated to evaluate the test set performance of the trained 

machine learning algorithms. 

Balanced accuracy: Traditional accuracy measure is not appropriate when the classes is not balanced. 

Balanced accuracy, on the other hand, is a useful measure when there is high imbalance between classes.  

Balanced Accuracy   
 

 
 

  

     
 

  

     
                                 (1) 

Recall: This measure is the rate of actual positives among all positives.  

Recall   
  

     
            (2) 

Precision: This measure is the rate of actual positives among observations classified as positives.  

Precision   
  

     
         (3) 

F1-score: This measure is the harmonic mean of precision and recall. This measure is beneficial in the 

case of imbalanced classes. 

                                                 F1-score     
Precision Recall

Precision Recall
         (4) 

Matthews correlation coefficient (MCC): MCC measures the correlation between observed and 

estimated classes. MCC value equals -1 means a total disagreement between observed, while MCC value 

equals +1 shows a perfect prediction. A value of 0, on the other hand, indicates the random estimation. 

                               MCC   
           

                             
        (5) 

where TP=true positives, TN=true negatives, FP=false positives, and FN=false negatives. 
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DATA PRE-PROCESSING AND MODEL BUILDING 

It is necessary to calculate the molecular descriptors to analyze the bioassay acquired by the HTS method 

using machine learning algorithms. PaDEL is free and open-source software developed by Yap.
24

 In this 

study, we computed 2,757 descriptors using the PaDEL software for each dataset. Then, we removed 

missing values, empty columns and zero variance variables. Subsequently, the number of variables was 

reduced to 1,348. Each data set is randomly divided into 2 parts as 80% training and 20% test set. 

Furthermore, 10% of the training set randomly selected as a validation set during the training procedure. 

The z-score transformation was applied to the training sets, and the test sets were standardized according 

to these. A 10 fold cross-validation was applied for parameter optimization of SVM and RF. For SVM, 

sigma and cost parameters are determined as 0.0004 and 4, and for RF, the number of randomly selected 

predictors is founded as 2, and the number of decision trees is founded as 500. For the DNN model, we 

used the rectified linear unit function as an activation function for input and hidden layers, and the 

sigmoid activation function for the output layer. Moreover, we applied batch normalization in each layer 

in order to improve the performance and stability of the network. We used a binary loss function and the 

Adam method for stochastic optimization. Parameters of the network were optimized using the loss score 

of the validation sets. We created a network with four hidden layers (the first layer: 1,024 nodes, the 

second layer: 2,048 nodes, the third layer: 1,500 nodes, and the fourth layer: 128 nodes). To avoid 

overfitting, we used 20% dropout rate. We used Python v-3.7.3 for DNN model training and R v-3.6.1 for 

SVM and RF. For the model building of SVM and RF, we used the wrapper package caret in R. The 

randomForest package is used to build the RF models, while kernlab and e1071 packages are used to build 

the SVM models. We used the keras library to build model for DNN, and the scikit-learn library to 

evaluate model performance metrics. 

    RESULTS 

We used 5 HTS datasets to train DNN, SVM, and RF algorithms, and the performance of each algorithm 

was tested on the same test set. The performances of the algorithms were compared using balanced accuracy, 

precision, recall, MCC and F1-score.  

Performance measures of DNN, SVM and RF for the AID652178 dataset were calculated (Table 2). 

This data set had an imbalanced class structure, where the number of inactives was approximately 5 times 

greater than the number of actives. The DNN outperformed SVM and RF (balanced accuracies were 0.767, 

0.526, and 0.540, respectively). Similarly, the DNN achieved better performances regarding recall (0.686), 

MCC (0.464) and F1-score (0.558). However, the RF and SVM showed better performances than the DNN 

in terms of precision (0.750, 0.667, and 0.471, respectively). 

 

TABLE 2: Test set performances of DNN, SVM and RF algorithms for AID652178. 
 

Measures DNN SVM RF 

Balanced accuracy  0.767 0.526 0.540 

Recall 0.686 0.057 0.086 

Precision 0.471 0.667 0.750 

F1 score 0.558 0.105 0.154 

MCC 0.464 0.162 0.219 
 

DNN: Deep neural networks; SVM: Support vector machines; RF: Random forest; MCC: Matthews correlation coefficient. 

 

Performance measures of the DNN, SVM and RF algorithms for the AID1053187 dataset were 

calculated (Table 3). This data set also has an imbalanced class structure, where the number of inactives is 

approximately three times greater than the number of actives. The DNN algorithm outperformed the SVM 

https://scikit-learn.org/
https://scikit-learn.org/
https://scikit-learn.org/
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and RF regarding all measures. The DNN showed the best balanced accuracy with 0.865, best recall with 

0.809, best precision with 0.782, best F1-score with 0.795, and best MCC with 0.721. 

 

TABLE 3: Test set performances of DNN, SVM, and RF algorithms for AID1053187. 
 

Measures DNN SVM RF 

Balanced accuracy  0.865 0.556 0.765 

Recall 0.809 0.155 0.619 

Precision 0.782 0.565 0.712 

F1 score 0.795 0.243 0.663 

MCC 0.721 0.191 0.555 
 

DNN: Deep neural networks; SVM: Support vector machines; RF: Random forest; MCC: Matthews correlation coefficient.  

 

Performance measures of the DNN, SVM, and RF algorithms for the AID1053196 dataset were 

calculated (Table 4). This was the most imbalanced bioassay used in the study. In this bioassay, the number 

of inactive molecules was approximately nine times greater than the number of active molecules. Once 

again, the DNN algorithm achieved better performances than the SVM and RF in all metrics, except 

precision. The DNN yielded the best balanced accuracy with 0.764, best recall with 0.630, best F1-score 

with 0.496, and best MCC with 0.439. 

 

TABLE 4: Test set performances of DNN, SVM, and RF algorithms for AID1053196. 
 

Measures DNN SVM RF 

Balanced accuracy  0.764 0.544 0.544 

Recall 0.630 0.087 0.087 

Precision 0.409 1.000 1.000 

F1 score 0.496 0.160 0.160 

MCC 0.439 0.281 0.281 
 

DNN: Deep neural networks; SVM: Support vector machines; RF: Random forest; MCC: Matthews correlation coefficient.  

 

Performance measures of the DNN, SVM and RF algorithms for the AID1159608 dataset were 

calculated (Table 5). This bioassay was the only dataset, which includes balanced classes. The DNN 

algorithm yielded better performances than the SVM and RF in terms of all performance measures in this 

balanced dataset. The DNN delivered the best balanced accuracy with 0.849, best recall with 0.823, best 

precision with 0.864, best F1-score with 0.843, and best MCC with 0.698. 

 

TABLE 5: Test set performances of DNN, SVM, and RF algorithms for AID1159608. 
 

Measures DNN SVM RF 

Balanced accuracy  0.849 0.625 0.645 

Recall 0.823 0.565 0.621 

Precision 0.864 0.637 0.647 

F1 score 0.843 0.598 0.634 

MCC 0.698 0.252 0.291 
 

DNN: Deep neural networks; SVM: Support vector machines; RF: Random forest; MCC: Matthews correlation coefficient.  

 

Performance measures of the DNN, SVM and RF algorithms for the AID1159609 dataset were 

calculated (Table 6). The number of inactive molecules is approximately 1.5 times the number of active 
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molecules in this bioassay. The DNN resulted in better performances than the SVM and RF regarding all 

metrics. The DNN gave the best balanced accuracy with 0.846, best recall with 0.805, best precision with 

0.827, best F1-score with 0.816, and best MCC with 0.696. 

 

TABLE 6: Test set performances of DNN, SVM, and RF algorithms for AID1159609. 
 

Measures DNN SVM RF 

Balanced accuracy  0.846 0.566 0.575 

Recall 0.805 0.259 0.266 

Precision 0.827 0.578 0.603 

F1 score 0.816 0.358 0.369 

MCC 0.696 0.169 0.192 
 

DNN: Deep neural networks; SVM: Support vector machines; RF: Random forest; MCC: Matthews correlation coefficient. 

 

 

The performances of the algorithms were also compared by considering the level of imbalance. It was 

observed that the DNN was the best performing algorithm in all imbalance structures in terms of balanced 

accuracy. The performances of the SVM and RF algorithms were found similar except for AID1053187. The 

results for the balanced accuracy were given in Figure 1. 

 

 

 
FIGURE 1: Comparison of DNN, SVM, and RF performances regarding balanced accuracy. 

 
DNN: Deep neural networks; SVM: Support vector machines; RF: Random forest. 

 

 

Similar outcomes were obtained for F1-score and MCC. The DNN was the best performing algorithm in 

all levels of imbalance in terms of F1 score and MCC (Figure 2 and Figure 3). The performances of the 

SVM and RF were found similar, except for the AID1053187, where RF performed better than SVM.  
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FIGURE 2: Comparison of DNN, SVM, and RF performances regarding F1-score. 

 
DNN: Deep neural networks; SVM: Support vector machines; RF: Random forest. 

 
 
 

Although the DNN showed the best performance in all imbalanced data structures regarding balanced 

accuracy, MCC, and F1 score, it is observed that the network performance disrupts as the level of imbalance 

increases.  

 
 
 

 
FIGURE 3: Comparison of DNN, SVM, and RF performances in terms of Matthews correlation coefficient. 

 
DNN: Deep neural networks; SVM: Support vector machines; RF: Random forest. 
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    DISCUSSION 

Machine learning methods have been extensively investigated for the activity classification of small drug 

molecules. Sadowski and Kubinyi developed a classification model using the ANN algorithm with 169,331 

non-drug molecules from the Available Chemicals Directory (ACD) and 38,416 drug molecules from the 

World Drug Index (WDI).
3
 The accuracy rate of the ACD was 83% (non-drug molecules), and the accuracy 

rate of the WDI was 77% (drug molecules). Byvatov et al. compared the performances of SVM and ANN 

algorithms using 4,998 drugs and 4,210 non-drug molecules.
4 

They found that the SVM (82% accuracy and 

0.63 MCC) outperformed the ANN (80% accuracy and 0.58 MCC). In another study, Zernov et al. compared 

performances of SVM and ANN using 15,000 drug and 15,000 non-drug molecules.
5
 Once again, SVM 

performed better than different ANN models (accuracy rate of the multi-layer sensor was 72.52%, the 

modular feed-forward network was 70.92%, and the generalized feed-forward network was 69.85%) with an 

accuracy of 75.15%. Korkmaz et al. aimed to distinguish between drug and non-drug compounds using the 

SVM with various feature selection methods.
6
 They used 311 drug and 320 non-drug molecules for the 

training set, and 98 drug and 118 non-drug molecules for the test set. As a result, the test set’s accuracy rates 

were between 76% and 81%. In another study, Korkmaz et al. investigated performances of 23 machine 

learning models using the same dataset.
7
 They reported accuracy rate between 68% and 79%, sensitivity 

between 81% and 92%, positive predictive value between 60% and 72%, F1 score between 0.72 and 0.79, 

MCC between 0.42 and 0.59. 

Recently, DNN has been used in drug classification studies and outperformed traditional machine 

learning methods. Ma et al. found that the DNN showed a better performance than the RF for the 

development of quantitative structure-activity relationships models.
10

 Mayr et al. utilized DNN for the 

toxicity prediction.
11

 Ramsundar et al. performed a multitask learning with the DNN using different 

publicly available datasets (PCBA, DUD-E, Tox21 and MUV).
12

 Koutsoukas et al. used seven different 

bioactivity datasets (ChEMBL205, CHEMBL301, CHEMBL240, CHEMBL219, CHEMBL244, 

CHEMBL218) to compare the DNN with other classical machine learning algorithms.
13

 They reported 

that the DNN outperformed all traditional machine learning methods. Another study conducted by 

Lenselink et al. showed that the DNN performed better than NB, RF, SVM, and logistic regression.
14

 

In this study, 5 HTS bioassays with distinct levels of imbalance were used. Then, the performance of the 

DNN compared with classical machine learning algorithms, including SVM and RF. The balanced accuracy 

for the DNN was found between 0.764 and 0.865, whereas the balanced accuracy rates for the SVM and RF 

were found between 0.526-0.625 and 0.540-0.765, respectively. Similar results obtained for recall (0.630-

0.823 for the DNN, 0.057-0.560 for the SVM and 0.086-0.619 for the RF), F1-score (0.496-0.843 for the 

DNN, 0.160-0.598 for the SVM and 0.160-0.663 for the RF), and MCC (0.439-0.721 for the DNN, 0.162-

0.281 for the SVM and 0.192-0.555 for the RF). This study showed that the DNN performed better than the 

SVM and RF in terms of all performance measures, except precision in AID652178 and AID1053196. Even 

though the DNN performed better than the SVM and RF based on balanced accuracy, F1 score, and MCC in 

all datasets, it was observed that the performance of the DNN decreased as the level of class imbalance 

increased. 

Although traditional machine learning algorithms broadly used in the drug classification problem, the 

datasets used in these studies were generally well balanced. However, in practice, it is well known that the 

number of active compounds is significantly smaller than the number of inactive compounds. Our results 

clearly showed that traditional machine learning algorithms (i.e., SVM and RF) were negatively affected by 

the class imbalance. The DNN, on the other hand, can mitigate this effect to a degree. Therefore, other 

methods, such as data balancing methods, should be incorporated into the DNN to overcome the class 

imbalance problem. 
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    CONCLUSION 

Drug development is a challenging, costly and time-consuming process. The rational drug design approach 

has been used to reduce the time and cost of drug development studies. Bioassays acquired by the HTS 

method are stored in an online database, called PubChem. Thus, machine learning methods can be trained, 

and high-performed models can be developed to detect active molecules using the PubChem. Although 

traditional machine learning algorithms have been used for drug development studies for a long time, the 

data sets used to train these algorithms are generally balanced. However, the actual datasets in the PubChem 

are imbalanced. The nature of these datasets (i.e, imbalanced classes) negatively affects the performance of 

classical machine learning algorithms. Recently, the deep learning has performed well in many areas, 

including drug discovery. 

In this study, we trained DNN algorithms using 5 different imbalanced HTS datasets. We also compared 

the performance of the DNN with traditional machine learning algorithms, SVM and RF. We observed that 

the DNN outperformed the SVM and RF. The results of this study suggest that the PubChem database is a 

useful resource for training machine learning models. Moreover, the DNN is a well-performed algorithm that 

can be used to classify small drug compounds in an imbalanced class problem. 
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