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Classification of EEG Signals for Epileptic Seizures 
Using Linear and Non-linear Classifiers Based 
Wavelet Transforms and Information Criteria  

Dalgacık Dönüşümleri ve Bilgi Kriterlerini Temel Alan 
Lineer ve Lineer Olmayan Sınıflandırıcılarla  

Epileptik Nöbetler İçin EEG Sinyallerinin Sınıflandırılması

ABSTRACT Objective: This study presents an efficient procedure that provides an accurate clas-
sification of Electroencephalogram (EEG) signals for the detection of epileptic seizure. Essen-
tially, the proposed procedure hybridizes the linear and nonlinear classifiers with the discrete 
wavelet transforms (DWT) and principal component analysis (PCA), separately. Material and 
Methods: To classify EEG signals more accurately, the proposed multi-resolution signal proces-
sing technique splits them into the detailed partitions with different window-widths, and then 
decomposes them into detail and approximation coefficients by means of DWT. Thus, many 
specific latent features that characterize the nonlinear and dynamical structures in the signals 
can be evaluated from these coefficients. During the model estimation process with multivariate 
logistic regression (MLR) and artificial neural networks (ANNs), to control the complexity of 
model and reduce the dimension of feature matrix, PCA is used. In addition, to quantify the 
complexity and select the best models, the information criteria are considered for both MLR and 
ANNs. To improve the classification performance, ANNs are trained by various gradient algo-
rithms as well as considering early stopping and cross-validation techniques. Results: According 
to analysis results over the benchmark epilepsy data set released by the Department of Epilep-
tology at University of Bonn, the proposed approach is to bring out 99% accuracy ratios for 
classifying the epileptic signals. Conclusion: This approach not only allows making an efficient 
analysis of EEG signals for detection of epilepsy, but also provides the best model configurations 
for ANNs and MLR in terms of reliability and complexity. 

Keywords: EEG signal processing; epileptic seizures; discrete wavelet transform;  
                   artificial neural networks; multinomial logistic regression; principal component     
                   analysis    

ÖZET Amaç: Bu çalışma, epileptik nöbetlerin tesbiti için Elektroensefalogram (EEG) sinyalle-
rini doğru sınıflandıran etkin bir yöntem önermektedir. Esas olarak, bu yöntem lineer ve lineer 
olmayan sınıflandırıcıları, ayrık dalgacık dönüşümleri (ADD) ve temel bileşenler analizi (TBA) 
ile hibritleştirmektedir. Gereç ve Yöntemler: Önerilen çoklu-çözünürlüklü sinyal işleme tekni-
ği, EEG sinyallerinin daha doğru sınıflandırılmak için onları farklı bant genişlikli parçalara böl-
mekte ve bu parçaları ADD yardımıyla ayrıntı (detail) ve yaklaşım (approximate) katsayılarına 
ayrıştırmaktadır. Böylece, sinyallerin barındırdığı dinamik ve lineer olmayan yapıları karaterize 
eden birçok gizli özellik, bu katsayılar üzerinden belirlenmektedir. Çokterimli Logistik Regreg-
resyon (ÇLR) ve Yapay Sinir Ağlarıyla (YSA) model kestirim sürecinde, karmaşıklığı kontrol et-
mek ve veri matrisini indirgemek için TBA kullanılmıştır. Bunun yanısıra, model karmaşıklığı-
nın nicelendirilmesi ve en iyi modellerin belirlenmesi için bilgi kriterlerinden yararlanılmıştır. 
Doğru sınıflandırma performasını arttırmak için YSA’lar erken durdurma ve çapraz geçerlilik 
teknikleriyle beraber çeşitli gradyan-tabanlı öğrenme algoritmalarıyla eğitilmiştir. Bulgular: 
Bonn Üniversitesi Epileptoloji bölümünce herkesin kullanımına açılmış epilepsi veri seti üzerin-
den elde edilen analiz sonuçlarına göre, önerilen yaklaşım epileptik sinyallerin ayrıştırılmasında 
%99’lara varan doğruluk oranları vermektedir. Sonuç: Bu yaklaşım epilepsinin teşhisi için EEG 
sinyallerinin etkin bir analizini yapmakla kalmayıp, model güvenilirliği ve karmaşıklığı bakı-
mından da ÇLR ve YSA’lar için en iyi model konfigürasyonlarını sağlamaktadır.
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Epilepsy is one of the most common central nervous disorders, which is temporary abnormal electric 
discharges in the nerve cells and  occur at unpredictable times and usually without warning.1,2,3 

Epileptic seizures trigger the  involuntary spasms bringing about serious physical injuries or even 
death. Generally, to examine  the characteristics of seizures and reason of epilepsy, there are various tools 
such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI) scans, Electroencephalography 
(EEG) and brain imaging tests as well as the medical history and blood tests. Depending on the case, these 
tools can be used exclusively or together. Specifically, EEG provides valuable information with helping 
multi-electrode recording of time-varying the electoral activity in the brain. Thus, saving the functional 
and instant changes in the brain provides valuable information about the electrical activity of the brain 
and possible types of seizures.4  Besides, the epileptic EEG recordings having seizure have a large number 
of spike signals compared to the normal EEG recordings, and the amplitude increases noticeably.5  

Other than visiual test, to detect the epileptic seizures by using automated computer software, EEG signals 
related to brain’s electrical activity in real-time are partitioned into the seizure and non-seizure periods by 
means of unsupervised and supervised techniques. Technically, some shortcomings feced in this process 
on EEG signals can be handled by the supervised techniques in the discriminative structure.3,6,7 Regarding 
to EEG test, another issue is including noisy signals. Besides, some significant information related to the 
past or future of epileptic seizures can be overlooked through EEG signals, because  they might be masked 
by other biological signals. Hence, these shortcomings are eliminated by signal processing techniques that 
magnify the relevant information and to extract the latent features from EEG signals.8 By means of the 
signal processing techniques such as Lyapunov exponent, Fourier, Hilbert, Wavelet transforms (WTs), 
etc., the signals are decomposed into the transformed sub-series. Basically, this process is known as mul-
ti-resolution signal processing or sub-band coding.

WTs are very efficient tool to extract the explanatory features from brain signals without not so much 
loss of information and establishes the decomposition from them into the sub-transformed series with 
different scales at the desired decomposition levels in the specific time interval. In this way, some specific 
latent features which characterize the dynamical and nonlinear frameworks in the signals can be obtained 
from these sub-transformed bands.9-14 In the literature, there are remarkable approaches in which diffe-
rent feature extraction techniques are processed to extract different types of features such as the statistical 
moments, entropy and metric measures.15-18 

In the context of seizure detection, the most commonly used techniques are Discriminant Analysis, Logis-
tic Regression, Gaussian Mixture Models, Regression Trees, Random Forest, k-Nearest Neighbor,  Naive 
Bayes Classifier, Kernel Methods, Support Vector Machines (SVMs), ANNs and ANFIS classifiers. Accor-
ding to  analysis results reached from current studies in the litereature, hybrid AI techniques give pretty 
much superior performance to the classical statistical ones, because they estimate much more efficient 
models in the nonlinear and high dimensional cases. In these studies, WTs are often used together with 
various classifiers. Especially, ANN classifiers are often used together with WTs due to their flexible and 
adjustable structures.10,11,14,19-27 Also, there are many studies in which different feature extraction techniqu-
es are perefered with the other classifiers rather than ANNs.1,12,13,15-17,28-40 

MOTİVATİON AND OVERVİEW

In the context of epilepsy, recently the automated multi-resolution tools are used together with the clas-
sical statistical methodologies or AI techniques against the classical visual test. To do this, EEG recordings 
are initlally partitioned into the sub-series with the predetermined window-widths. After that, these 
sub-series are decomposed into the transformed sub-series by means of signal processing techniques. Ac-
tually, this process brings out delta, theta, alpha, beta and gamma waves having different frequency bands 



Turkiye Klinikleri J Biostat. 2019;11(2):102-22

104

Ezgi ÖZER et al.

from brain signals.4,41-43 Generally, to assign a suitable window-width, there are two approaches in the 
litrrature: the fixed and non-fixed ones.  In this study, the automated multi-resolution approach starts 
a fixed window-width, and then shortens it gradually each iteration until the feature extraction process 
produces the desired outputs.

To ivestigate the epileptic signals in a short time, discrete wavelet transforms (DWT) are able to establish 
a successful multi-resolution analysis.27,44,45 However, the selection of mother wavelets has an important 
role to find out the charateristics of epileptic behaviours. On the performance of wavelet families with 
regarding to making an efficient multi-resolution; Amorim et al., Faust et al., and Chen et al. made remar-
kable studies.27,46,47 In this study, to imrove the performance of multi-resolution process, various mother 
wavelets were tested with respect to the referenced studies.

In the proposed multi-resolution process, the statistical indicators obtained from the wavelet coefficients 
are used as inputs (features) in the estimation procedure of ANN and MLR models. The dimension of data 
set (training set) changes with the decomposition level of DWTs and number of features. For this reason, 
the feature matrix should be reduced to control the complexity of estimated models. However, the resear-
chers are not interested so much the complexity of model during estimation process, even if it is directly 
related to generalization.

In MLR analysis, the excessive linear correlation between features is known as multicollinearity which 
is a hypothetical decay. To cope with this problem, PCA produces new orthogonal factors called as the 
principal components. Thus, the dimension of feature matrix can be reduced with respect to the variance 
explanation percentage of selected components in addition to overcoming the multicollinearity.  

After reducing the dimesion of data set, EEG signals are classified with respect to their predetermined 
classes and the reduced feature set. In this study, to improve the classification performance, ANNs are 
preferred as the nonlinear classifiers, since they do not need any restrictive assumption and provide very 
flexible estimation procedure. From the previous researches in the literature, it’s well known that they 
produce superior performance to the linear classifiers such as MLR and discriminant analysis in the high 
dimensional and nonlinear enviroments. Despite of their advantages, they suffer from some challenges 
such as the network desing, model complexity, memory allocation and tuning parameters.48-52  

Another problem related to ANNs arises at selection of risk function. For instance, the analysts often 
perefer the mean squared error (MSE) as a risk function. However, this risk function causes two types er-
rors: approximation and estimation errors where they are directly related to the complexity of model and 
must be reduced simultaneously.52-55 In the proposed procedure, to handle the complexity problem during 
the training process of ANNs, some information criteria are used such as Akaike Information Criterion 
(AIC), Corrected AIC (AICc) and Bayesian Information Criterion (BIC) as well as an early stopping and 
cross-validation. Also, in this proposed procedure, information criteria allow determing the most efficient 
number of neurons in the hidden layers of ANNs. To investigate the best  training algorithms for ANNs, 
they are trained various gradient based algorithms such as Gradient Descent (GD) and GD with momen-
tum (GDM), Quasi-Newton known as Broyden, Fletcher, Goldfarb, and Shanno (BFGS), Scaled Conjugate 
Gradient (SCG) and Levenberg-Marquardt (L-M). To improve the performance of training algorithms, 
some useful techniques can be considered in terms of tuning parameters and stopping criteria.48-50,56,57 

Unlike ANNs, MLR doesn’t need a complicated methodology in terms of constructing its functional stru-
cture and estimation procedure. In addition, MLR doesn’t need the multivariate normality assumption 
different from the discriminant analysis and its derivatives. Generally, the parameters of MLR model are 
estimated by the maximum likelihood estimation (MLE). As is well-known from the statistical theory, 
MLE gives better performance in the case of large data.58,59 But, in the case of limited data, this may turn 
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into a handicap as well. To handle the model complexity and prevent multicollinearity between the in-
dependent variables in MLR, PCA and various variable selection procedures such as stepwise, backward, 
forward, etc. can be used together.60-62 In this study, to estimate the efficient MLR models and overcome 
the mentioned problems, firstly the feature matrix is reduced by PCA, and then the best models are deter-
mined with respect to the accurate classification ratios and information criteria. 

In this study, the main purpose is to propose an efficient procedure allowing the medical experts to make 
a comprehensive analysis of EEG signals for epilepsy detection using ANNs and MLR, and develop its 
software for the clinical researches. To introduce the proposed approach, this paper is structured as fol-
lowing. Section 2 gives the main frameworks of DWTs, PCA, MLR and ANNs. Section 3 includes an 
application in which the proposed and traditional approaches are compared each other over a benchmark 
EEG data set in the context of detection of epileptic seizures. Section 4 is placed for the analysis results and 
their interpretions. Lastly, the conclusions and future researches are discussed in Section 5.

METHODOLOGY
The flowchart of the proposed procedure is shown in Figure 1. Initially, EEG signals are received from dif-
ferent electrodes and then they are decomposed into the subseries by DWT. Thus, the original signals are 
represented in another space where the latent characteristics of them are exposed better. The second stage 
is to evaluate some significant features over the predetermined window-widths of decomposed subseries. 
This stage produces a feature matrix that will be used in the classification of EEG signals in the context of 
epilepsy detection. After that, to control the model complexity and prevent the multicollinearity problem 
between the feature vectors, the dimension of feature matrix is reduced. Essentially, the multicollinearity 
is a hypothetical decay for the linear classifiers such as the logistic regression. After reducing the dimen-
sion of feature matrix and feature selection, the last stage is to estimate the classification models by means 
of the linear and nonlinear classifiers: MLR and ANNs, respectively. Before the estimation process, the fe-
ature matrix is subject to the cross-validation to ensure more general models. Lastly, to control the model 
complexity and select the best model configuration, the information criteria are considered as well as the 
accuracy ratios and error function in the terms of classifying EEG signals correctly.  

FEATURE EXTRACTION USING DISCRETE WAVELET TRANSFORM

Wavelet transform is to analyze time series signals in the nonlinear structure at different frequencies and 
decomposes them by shifting the wavelet in the time axis and changing the size.63,64 Basically, in the con-
tinuous time domain, a wavelet transform of signal x[n] can be defined as

FIGURE 1: The flowchart of the proposed procedure.
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63,64 Basically, in the continuous time domain, a wavelet transform of signal x[n] can be defined 
as 

wts, τ = 	 √	 xtψ∗ τ ∞∞ dt                               

(1) 

where the function ψ∗∙ is a complex conjugate of the shifted and scaled wavelet function ψ∙. 
Here, the parameter τ shifts wavelet fuction ψ∙ along the time domain. This process is known as 
“translation”. Besides, the scale parameter s is interested in the stretching the wavelet function 
ψ∙. This process is called as “dilation”. In the context of wavelet transform, a family of wavelet 
function with scaled and shifted parameters is described as 44,65,66    wts, τ = 	 √ xtψ τ  ,								s > 0,  ∈                 (2) 

Generally, the time-frequency analysis is to bring out the masked characteristics in the signal x[n] 
by means of the decomposition processes. In this framework, both s and τ  are changed 
continuously; however this structure causes the redundant information as well as excessive 
memory allocation. For this reason, this shortcoming can be handled by discretizing the 
parameters s and τ instead of continuous domain.  

In DWT framework, a set of transformed sub-bands is obtained by using the low-pass h[n] and 
high-pass g[n] filters where they are known as  the wavelet coefficients. By the filtering 
processes, a signal x(t) can be decomposed into the low and high frequency sub-bands as 
follows:67 

a, = 	 〈xt, ϕ,t〉 = 	∑ hm − 2ka,              

(3) 

and,  d, = 	 〈xt,ψ,t〉 = 	∑ gm − 2kd,              

(4) 

where 〈∙〉  is the inner product operator. In the high and low frequency components, a, =	〈xt, ϕ,t〉 and d, = 	 〈xt,ψ,t〉 are called as the detailed and approximate coefficients, 

respectively. These components at the wavelet decomposition level j are obtained by convolving 
the approximate and detailed coefficients at decomposition level (j-1) by means of the lowh[n] 
and highg[n] pass filters.  The scheme is exhibited in Fig. 2. 44,45,67-70 
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FIGURE 2: G and H are high and low pass filters, respectively.[44,66]
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continuously; however this structure causes the redundant information as well as excessive 
memory allocation. For this reason, this shortcoming can be handled by discretizing the 
parameters s and τ instead of continuous domain.  

In DWT framework, a set of transformed sub-bands is obtained by using the low-pass h[n] and 
high-pass g[n] filters where they are known as  the wavelet coefficients. By the filtering 
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the approximate and detailed coefficients at decomposition level (j-1) by means of the lowh[n] 
and highg[n] pass filters.  The scheme is exhibited in Fig. 2. 44,45,67-70 
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In the signal processing by DWT, the choice of an adequate wavelet plays a crucial role to explore main 
characteristics of the related signal. In the literature of DWT, there exists common wavelet families such 
as biorthogonal, Coiflets, Daubechies, Discrete Meyer, Haar, Biorthogonal and Symlets.71-73 To determine 
a suitable wavelet in the analysis, the researchers are mostly interested in the structures of EEG signals 
with respect to the related case. There exists remarkable studies for the feature extraction from EEG sig-
nals in the literature. Also, the expert knowledge might be enough to use correct wavelet structure in the 
clinical researches.27,46,47,66
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(5) ⋮  =  +  +⋯+  =                        

where , … ,   are the  principal components  and   is the weight of the variable	th for 

principal component th. From Eq. 5,  is the first PC that explains the maximum variance in the 

model. Here,	 is the second PC having the second largest variance, and so on. Thus, PCA not 

only provides reducing the dimension of data matrix, but also ensures an orthogonal system 
where the linear correlations between variables are vanished. For this reason, PCA is widely used 

in the image and signal processing, classification and pattern recognition problems. 79  
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MLR is a statistical method that can be used for predictive analysis. Similar to the multiple 

linear regression analysis, it has the dependent   and independent variables  = , … ,  
where dependent one includes the categorical outcomes unlike continuous ones such as  =0,1, … ,  − 1. 80,81 MLR can be expressed by a logit function as follows:80 

 =  \\ ,  = 0,… ,  − 1                

												=  +  + ⋯+                 (6) 

where 	,   is the intercept and  = 1,… ,   is unknown parameter. Here, the conditional 

probability of Y is obtained as:  

 = | = ∑  ,				 = 0,… ,  − 1	                 

(7) 

To estimate the model parameters in Eq. 7, the maximum likelihood estimation (MLE) can be 
used. Generally, MLE intends to maximize the probabilities of occurrence of the outcomes. In 

addition, this method needs the large data set to ensure more accurate parameter estimations. 58,76 

 

2.4 Architecture of ANN Classifiers based MSE 

In this study, to estimate the robust classification models, ANNs with different configurations 
are used. Fig. 3 shows a simple structure of ANNs. In this structure, the first layer is directly 
connected with inputs and the hidden layer includes p number of neurons. The last layer consists 
of output vector y  that includes totally k number of classes y  = [o, 	o, … , 	o ] where c 
indicates the indices of classes            (c = 1,2, … , k). In this framework, output y is related to 
any one of k classes: 

 yϵ1,0,0, , … ,0, 0,1,0, … ,0, 0,0,1, … ,0, … , 0,0,0, … ,1                                                                
(8) 

              Class 1          Class 2                                   Class k 

Here, any element of y is described as follow: 

o = fWΙ,WΙΙ, x = ΙΙ
∑ ΙΙ

	ϵ	0, 1										c = 1,2, … , k                                                      

(9) 

Apperantly, Eq. (9) is a soft-max function where W : The weight matrix defined from inputs to the neurons in the hidden layer  W : The weight matrix defined between the hidden and output layers 
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MLR is a statistical method that can be used for predictive analysis. Similar to the multiple 

linear regression analysis, it has the dependent   and independent variables  = , … ,  
where dependent one includes the categorical outcomes unlike continuous ones such as  =0,1, … ,  − 1. 80,81 MLR can be expressed by a logit function as follows:80 

 =  \\ ,  = 0,… ,  − 1                

												=  +  + ⋯+                 (6) 

where 	,   is the intercept and  = 1,… ,   is unknown parameter. Here, the conditional 

probability of Y is obtained as:  

 = | = ∑  ,				 = 0,… ,  − 1	                 

(7) 

To estimate the model parameters in Eq. 7, the maximum likelihood estimation (MLE) can be 
used. Generally, MLE intends to maximize the probabilities of occurrence of the outcomes. In 

addition, this method needs the large data set to ensure more accurate parameter estimations. 58,76 

 

2.4 Architecture of ANN Classifiers based MSE 

In this study, to estimate the robust classification models, ANNs with different configurations 
are used. Fig. 3 shows a simple structure of ANNs. In this structure, the first layer is directly 
connected with inputs and the hidden layer includes p number of neurons. The last layer consists 
of output vector y  that includes totally k number of classes y  = [o, 	o, … , 	o ] where c 
indicates the indices of classes            (c = 1,2, … , k). In this framework, output y is related to 
any one of k classes: 

 yϵ1,0,0, , … ,0, 0,1,0, … ,0, 0,0,1, … ,0, … , 0,0,0, … ,1                                                                
(8) 

              Class 1          Class 2                                   Class k 

Here, any element of y is described as follow: 

o = fWΙ,WΙΙ, x = ΙΙ
∑ ΙΙ

	ϵ	0, 1										c = 1,2, … , k                                                      

(9) 

Apperantly, Eq. (9) is a soft-max function where W : The weight matrix defined from inputs to the neurons in the hidden layer  W : The weight matrix defined between the hidden and output layers 

(9)

and the hidden layer includes p number of neurons. The last layer consists of output vector yc that inclu-
des totally k number of classes yc = [O1,  O2, …, Ok] where c indicates the indices of classes (c=1,2,…,k). In 
this framework, output yc is related to any one of k classes:

Here, any element of yc is described as follow:

Apperantly, Eq. (9) is a soft-max function where

WI : The weight matrix defined from inputs to the neurons in the hidden layer 

WII : The weight matrix defined between the hidden and output layers

x:   The input vector includes the features 

bI : The bias vector defined as bΙ= 
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k: the total number of classes 

In Eq. 9, A(wIx + bI):Rs→Rs corresponds to a vector function that covers s number of activation functions 
as follow:
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In Eq. 9, A(wx +	b: R → R   corresponds to a vector function that covers s number of 
activation functions as follow:  AWΙx + bΙ = G Aw x + b , Aw x + b , …	, Awx + b 	                                           

(14) 

where Aj denotes the j tangent hyperbolic function in the hidden layer:  

Aj = 
		 ; NETj = wx + b           j = 1, 2, …, s.                                                          (15) 

In this framework, the main purpose of ANNs is to minimize the classification error. To do this, 
the most practical way is to train ANNs with MSE by using the gradient-based  algorithms. 
Essentially, this approach corresponds to minimize L2 norm in the metric space. Here, as a risk 
function, MSE can be defined as  

MSE = ∑ ∑ ,	, × 										c = 1,2, … , k;  i = 1, 2, …, N. 

After the training procedure, the last step is to assign the output y = [o, 	o, … , 	o] to any of k 
classes with respect to Eq. 9. Thus; the components of y are transformed into the binary numbers 
as follow:   

χ =  1, if	o = max 	o, 	o, … , 	o,	0, Otherwise.																																			                                                                                                      

(16) 

 

3. APPLICATION 

3.1 Data Collection 

In the application, it is used a benchmark data set realesed by Department of Epileptology, 
University of Bonn  is preferred, because it allows comparing the proposed approach with the 
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closed, respectively where they were recorded extracranially by means of a standardized 10-20 electrode 
placement system. Groups C, D, and E were recorded intracranially from five patients where they were se-
lected from EEG archive of presurgical diagnosis. The samples of EEG signals in set D were recorded wit-
hin the epileptogenic zone, and those in set C from the hippocampal formation of the opposite hemisphere 
of the brain. Groups C and D consist of only activity recorded during seizure free intervals whereas grpup 
E only seizure activity.11,27

ANALYSIS

To investigate the epileptic behaviors in the five group sets, the first step is to extract some significant 
features from EEG signals. Therefore, the proposed procedure partitions each channel into the sub-series 
with respect to the predetermined fixed window-width. In each iteration, the sizes of window-widths are 
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changed whether the sufficient patterns are provided from EEG signals. Thus, the automated multi-reso-
lution technique continues to look for the latent characteristics in these sub-series with respect to various 
window-widths and resolution levels until the classifiers produce the desired classification performance. 
To figure out the latent behaviours of epileptic seizures, some important feautures can be evaluated from 
the detail and approximation coefficients. To do this, totatally nine feautures are taken into account where 
they correspond to mean, median, standard deviation, kurtosis, skewness, maximum, minimum, entropy 
and energy values of the detail and approximation coefficients.

The performance of classifiers depends on the information provided from the detail and approximation coef-
ficients, so various mother wavelets are tried in the processes of DWT. For this reason, the previous studies 
in the literature are considered as well as trial and error. In the decomposition process of EEG signals, Da-
ubechies 10 (db10) wavelets were preferred, because they provided a sufficient performance for classifiers.

The feature extraction process can be summarized as following. As seen in Figure 4, the series z1(t) with 
4096 observations includes EEG signals from Channel 1 in Group A. Here, z1(t) is pertitioned into 8 
sub-series with 512 samples (si(t), i = 1, 2, ….,8). By doing this, more detailed information can be obtained 
from these small sub-series. For this reason, this process was applied to EEG series in the all the channels. 
Then, all the partitions si(t) were subject to the time frequency decomposition using DWT, separately. As 
seen in Figure 5, any si(t) can be decomposed into the six detail (Dj, j = 1, 2, …,6) and approximation (Aj, 
j = 1, 2, …,6) coefficients at the sixth level. In this process, the sub-series Ai and Dj are filtered by low (H) 
and high (G) pass filters, respectively. When the features are being evaluated over these coefficients, the 
last approximation coefficient at the sixt level and all the details coefficients were considered, because this 
approach brought out enough information about epileptic seizures.

As seen in Table 1, a feature vector of any partition si(t) can be produced by using features calculated from 
six details and one approximation series. Thus, the feature vector related to si(t) consists of 63 statistical 
indicators (9 features × 7 coefficients). If this process is applied to the other sub-series of z1(t), then totally 
9 feature vectors will be produced. 

FIGURE 4: Seperation of segment z(t).
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TABLE 1: Feature vector of s(t) with 63 components.
d1 d2 d3 d4 d5 d6 a6

Maximum (d1) Maximum (d2) Maximum (d3) Maximum (d4) Maximum (d5) Maximum (d6) Maximum (a6)

Maximum (a6) Minimum (d2) Minimum (d3) Minimum (d4) Minimum (d5) Minimum (d6) Minimum (a6)

Median (d1) Median (d2) Median (d3) Median (d4) Median (d5) Median (d6) Median (a6)

Mean (d1) Mean (d2) Mean (d3) Mean (d4) Mean (d5) Mean (d6) Mean (a6)

Entropy (d1) Entropy (d2) Entropy (d3) Entropy (d4) Entropy (d5) Entropy (d6) Entropy (a6)

Energy (d1) Energy (d2) Energy (d3) Energy (d4) Energy (d5) Energy (d6) Energy (a6)

Skewness (d1) Skewness (d2) Skewness (d3) Skewness (d4) Skewness (d5) Skewness (d6) Skewness (a6)

S.deviation (d1) S.deviation (d2) S.deviation (d3) S.deviation (d4) S.deviation (d5) S.deviation (d6) S.deviation (a6)

TABLE 2: Training data set obtained from DWT for the window-widths with 512 samples at the sixth level.[66]

9 Features from D1 9 Features from D2     . . . 9 Features from D5 9 Features from D6   Yc

1 0 0 0 0

A
8x100 = 800  
observations

   .
   .
   .

0 1 0 0 0

B
8x100 = 800  
observations

   .
   .
   .

0 0 1 0 0

C
8x100 = 800  
observations

   .
   .
   .

0 0 0 1 0

D
8x100 = 800  
observations

   .
   .
   .

0 0 0 0 1

E
8x100 = 800  
observations

.
   .
   .

In this framework, totally 800 feature vectors can be obtained from 100 Channels in Group A. Similary, 
for all the groups (A, B, C, D and E), totally 4000 (5×800) feature vectors will be produced. Lastly, at 
the end of the automated multi-resolution decomposition using the window-widths with 512 samples,              
a feature matrix with 4000×63 will be created as seen in Table 2. In the context of the supervised learning, 
the classes corresponding to feature vectors can be designed by using the binary coding with respect to 
Eq.16 for five groups as following:{0, 0, 0, 0, 1}, {0, 0, 0, 1, 0}, {0, 0, 1, 0, 0}, {0, 1, 0, 0, 0} and {1, 0, 0, 0,0}.66

In the estimation procedure, to control the complexity of model, the excessive number of features is elimi-
nated by PCA. Thus, the elimination of some features allows to estimate more robust models by reducing 
the dimension of feature matrix in addition to reducing unnecessary memory usage. After this process, 
the feature matrix is used to estimate robust models by MLR and ANNs. To improve the classification per-
formance, ANNs  are trained by the gradient-based algorithms. In Figure 6, the scheme of the proposed 
approach is given in detail.
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TABLE 3: Performance of GD based DWT.
Neurons Training data MSE Test data MSE AIC AICc BIC Training classes % Test classes % Total classes %

6 0.2031 0.2038 -6290.90 -6289.90 -5977.25 99.3 98.5 99.2

7 0.2031 0.2038 -6276.64 -6275.30 -5911.94 99.4 98.8 99.2

12 0.2028 0.2037 -6211.50 -6207.68 -5591.51 99.3 98.8 99.1

15 0.2025 0.2029 -6175.64 -6169.70 -5402.47 99.5 99.3 99.4

17 0.2025 0.2029 -6147.44 -6139.82 5272.15 99.5 98.8 99.3

20 0.2023 0.2028 -6110.64 -6100.11 -5082.18 99.6 99.3 99.4
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 Fig.6. The scheme of proposed approach 

3.3   Training ANNs using the gradient-based algorithms 

In the context of epilepsy detection, to improve the classification performance of ANNs, they 
were trained by various gradient-based  algorithms. During the estimation process, the learning 
algorithms were treated by different tuning parameters whether they increase the performance of 
ANNs or not. Besides, the over-fitting and complexity of model are handled by early stopping, 
cross-validation as well as the information criteria. For the cross-validation, the feature matrix 
was partitioned into three subsets called as training, validation and test. In analysis, three 
information criteria (AIC, AICc and BIC) allow to determine the most efficient number of 
neurons in the hidden layers. Specifically, the best model configuration is examined by 
considering the true classification ratios over EEG signals together with MSE and information 
criteria. According to different training algorithms, all the performances of ANNs are discussed 
in detail as following. 

 

3.3.1 The performance of ANNs trained by the gradient descent (GD) 

During the model estimation process, to improve the performance of ANNs, GD algorithm 
was treated by different learning rates. In the hidden layers, the efficient number of neurons was 
investigated by information criteria, instead of trial and error. The best performances of ANNs 
are given in Table 3 and Table 4. According to results of Table 3 and Table 4, apparently the 
information criteria penalizes the complex models due to the excessive number of neurons. As a 
result, the accurate classification ratios can be obtained over training and test datasets by means 
of much smaller number of neurons as well. In the Tables, the best model configurations are 
given with bold font with respect to information criteria and accuracy ratios over test data.  
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FIGURE 6: The scheme of proposed approach.

TRAINING ANNs USING THE GRADIENT-BASED ALGORITHMS

In the context of epilepsy detection, to improve the classification performance of ANNs, they were trai-
ned by various gradient-based  algorithms. During the estimation process, the learning algorithms were 
treated by different tuning parameters whether they increase the performance of ANNs or not. Besides, 
the over-fitting and complexity of model are handled by early stopping, cross-validation as well as the 
information criteria. For the cross-validation, the feature matrix was partitioned into three subsets called 
as training, validation and test. In analysis, three information criteria (AIC, AICc and BIC) allow to deter-
mine the most efficient number of neurons in the hidden layers. Specifically, the best model configuration 
is examined by considering the true classification ratios over EEG signals together with MSE and infor-
mation criteria. According to different training algorithms, all the performances of ANNs are discussed in 
detail as following.

The Performance of ANNs Trained By The Gradient Descent (GD)

During the model estimation process, to improve the performance of ANNs, GD algorithm was treated by 
different learning rates. In the hidden layers, the efficient number of neurons was investigated by infor-
mation criteria, instead of trial and error. The best performances of ANNs are given in Table 3 and Table 
4. According to results of Table 3 and Table 4, apparently the information criteria penalizes the complex 
models due to the excessive number of neurons. As a result, the accurate classification ratios can be obta-
ined over training and test datasets by means of much smaller number of neurons as well. In the Tables, 
the best model configurations are given with bold font with respect to information criteria and accuracy 
ratios over test data.
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TABLE 4: Performance of GD based DWT and PCA.

Features

Variance
Explanation 

% Neurons

Training 
data  
MSE

Test    
data  
MSE AIC AICc BIC

Training   
classes  

%

Test  
classes

%

Total  
classes

%

20 91.42 9 0.2200 0.2209 -5929.01 -5926.83 -5462.19 91.2 90.5 91.0

30 97.30 15 0.2090 0.2103 -6049.06 -6043.13 -5275.90 96.6 95.3 96.1

33 98.29 15 0.2071 0.2097 -6086.35 -6080.41 -5313.18 97.8 95.5 97.2

39 99.25 13 0.2029 0.2038 -6196.27 -6191.79 -5525.22 99.4 98.8 99.2

42 99.51 10 0.2028 0.2029 -6244.05 -6241.38 -5726.18 99.6 99.3 99.5

49 99.87 8 0.2021 0.2024 -6282.27 -6280.54 -5866.51 99.8 99.8 99.7

57 99.99 7 0.2020 0.2019 -6314.15 -6312.80 -5949.45 100 99.8 100

60 100 9 0.2013 0.2018 -6284.55 -6282.37 -5817.73 99.9 99.8 99.9

As seen from Table 3 and Table 4, when the number of neurons in the hidden layer is increased, the per-
formance of training algorithm might improve until a certain number of neurons. However, at the large 
number of neurons, the model structure gets more complex, so the information criteria penalize it. In 
addition, the performances of the estimated models decrease slightly. From Table 4, while the number of 
PCs in the model grows, MSE for training and test data diminish. Also, the satisfaction over information 
criteria and the classification ratio increase.

Performance of BFGS

BFGS algorithm no needs any initial or tuning parameters during traing of ANNs, because it utilizes the 
approximations of Hessian matrix. In the hidden layers, the efficient number of neurons was investigated 
by information criteria, instead of trial and error. The best performances of ANNs are given in Table 5 
and Table 6. According to results of Table 5 and Table 6, the information criteria apparently penalize the 
complex models due to the excessive number of neurons. As a result, the accurate classification ratios can 
be obtained over training and test datasets by means of much smaller number of neurons as well. In the 
Tables, the best model configurations are given with bold font with respect to information criteria and 
accuracy ratios over test data.

As seen from Table 5 and Table 6, when the number of neurons in the hidden layer is increased, the per-
formance of training algorithm might improve until a certain number of neurons. However, at the large 
number of neurons, the model structure gets more complex, so the information criteria penalize it. In 
addition, the performances of the estimated models decrease slightly. From Table 6, while the number of 
PCs in the model grows, MSE for training and test data diminish. Also, the satisfaction over information 
criteria and the classification ratio increase.

TABLE 5: Performance of BFGS based DWT.
Neurons Training data MSE Test data MSE AIC AICc BIC Training classes % Test classes % Total classes %

8 0.2075 0.2092 -6175.85 -6174.11 -5760.09 96.2 95.3 96.1

9 0.2042 0.2067 -6227.37 -6225.19 -5760.55 98.0 96.5 97.6

10 0.2055 0.2088 -6187.87 -6158.20 -5669.99 97.4 95.5 97.0

12 0.2073 0.2065 -6124.44 -6120.62 -5504.45 96.4 97.0 96.2

13 0.2038 0.2041 -6179.25 -6174.77 -5508.20 98.2 98.0 98.0

18 0.2030 0.2074 -6123.91 -6115.38 -5197.57 98.6 96.3 98.3

20 0.2050 0.2057 -6057.61 -6047.08 -5029.15 97.5 97.0 97.5
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TABLE 6: Performance of BFGS based DWT and PCA.

Features

Variance
Explanation 

% Neurons

Training 
data  
MSE

Test    
data  
MSE AIC AICc BIC

Training   
classes  

%

Test  
classes

%

Total  
classes

%

20 91.42 16 0.2120 0.2163 -5978.75 -5972.00 -5154.52 94.1 91.8 93.5

27 97.45 9 0.2079 0.2096 -6154.09 -6151.91 -5687.28 96.4 95.0 96.0

33 98.29 14 0.2055 0.2061 -6130.31 -6125.13 -5408.20 97.3 96.5 96.8

41 99.44 14 0.2025 0.2038 -6189.34 -6184.16 -5467.23 98.8 98.0 98.6

49 99.87 4 0.2025 0.2025 -6330.26 -6329.79 -6118.73 98.8 98.8 98.8

56 99.99 6 0.2010 0.2011 -6332.20 -6331.19 -6018.55 99.6 99.5 99.5

TABLE 8: Performance of Scaled Conjugate Gradient-based  DWT and PCA.

Features

Variance
Explanation 

% Neurons

Training 
data  
MSE

Test    
data  
MSE AIC AICc BIC

Training   
classes  

%

Test  
classes

%

Total  
classes

%

20 91.42 18 0.2060 0.2105 -6066.11 -6057.58 -5139.76 97.5 94.3 96.4

25 94.90 18 0.2063 0.2082 -6059.14 -6050.61 -5132.79 97.4 96.0 96.5

35 98.73 12 0.2019 0.2047 -6229.13 -6225.30 -5609.13 99.4 97.8 98.9

40 99.37 12 0.2002 0.2013 -6263.32 -6259.49 -5643.32 99.9 99.5 99.8

45 99.69 12 0.2001 0.2009 -6266.09 -6262.27 -5646.10 100 99.8 99.9

55 99.99 12 0.2000 0.2006 -6267.75 -6263.93 -5647.76 100 99.5 99.9

59 ~100 12 0.2001 0.2004 -6266.43 -6262.61 -5646.44 100 100 100

63 ~100 12 0.2000 0.2004 -6267.06 -6263.23 -5647.06 100 100 100

TABLE 7: Performance of Scaled Conjugate Gradient-based  DWT.
Neurons Training data MSE Test data MSE AIC AICc BIC Training classes % Test classes % Total classes %

6 0.2009 0.2010 -6334.36 -6333.36 -6020.71 99.7 99.8 99.6

9 0.2005 0.2009 -6258.38 6254.55 -5638.38 99.7 99.3 99.6

11 0.2002 0.2009 -6277.45 -6274.22 -5708.51 99.9 99.5 99.8

12 0.2005 0.2009 -6258.38 -6254.55 -5638.38 99.8 99.5 99.7

15 0.2003 0.2005 -6219.06 -6213.13 -5445.89 99.8 100 99.8

16 0.2000 0.2000 -6211.73 -6204.98 -5387.51 100 100 100

20 0.2004 0.2004 -6148.59 -6138.06 5120.13 99.8 99.8 99.7

Performance of Scaled Conjugate Gradient Algorithm (SCG)

SCG algorithm no needs any initial or tuning parameters during traing of ANNs. As known in the literatu-
re, it makes very efficient search in the parameter space. In analysis, to improve the performance of ANNs, 
the efficient number of neurons was investigated by information criteria, instead of trial and error. The 
best performances of ANNs are given in Table 7 and Table 8. According to results of Table 7 and Table 8, 
the information criteria apparently penalize the complex models due to the excessive number of neurons. 
As a result, the accurate classification ratios can be obtained over training and test datasets by means of 
much smaller number of neurons as well. In the Tables, the best model configurations are given with bold 
font with respect to information criteria and accuracy ratios over test data.

As seen from Table 7 and Table 8, when the number of neurons in the hidden layer is increased, the per-
formance of training algorithm might improve until a certain number of neurons. However, at the large 



Turkiye Klinikleri J Biostat. 2019;11(2):102-22

115

Ezgi ÖZER et al.

number of neurons, the model structure gets more complex, so the information criteria penalize it. In 
addition, the performances of the estimated models decrease slightly. From Table 8, while the number of 
PCs in the model grows, MSE for training and test data diminish. Also, the satisfaction over information 
criteria and the classification ratio increase.

Performance of Levenberg-Marquardt Algorithm (LM)

LM algorithm initially needs only a damping parameter μ. Hence, to improve classification performance of 
ANNs based MSE, LM algorithm were treated with different intial parameter μ’s. In analysis, to improve 
the performance of ANNs, the efficient number of neurons was investigated by information criteria, ins-
tead of trial and error. The best performances of ANNs are given in Table 9 and Table 10. According to re-
sults of Table 9 and Table 10, the information criteria apparently penalize the complex models due to the 
excessive number of neurons. As a result, the accurate classification ratios can be obtained over training 
and test datasets by means of much smaller number of neurons as well. In the Tables, the best model con-
figurations are given with bold font with respect to information criteria and accuracy ratios over test data.

As seen from Table 9 and Table 10, when the number of neurons in the hidden layer is increased, the 
performance of training algorithm might improve until a certain number of neurons. However, at the lar-
ge number of neurons, the model structure gets more complex, so the information criteria penalize it. In 
addition, the performances of the estimated models decrease slightly. From Table 10, while the number of 
PCs in the model grows, MSE for training and test data diminish. Also, the satisfaction over information 
criteria and classification ratios increase.

PERFORMANCE OF MULTIARIATE LOGISTIC REGRESSION

In this implementation, classifying EEG signals was handled by MLR based on DWT and PCA. To investi-
gate the significance of estimated models; Cox and Snell, Nagelkerke and McFadden statistics were used as 
well as Wald test. In the analysis, the feature extraction was made with respect to different window-wi-
dths and decomposition levels for DWT. Thus, the model estimation was handled over many data sets 

TABLE 10: Performance of Levenberg Marquardt based DWT and PCA.

Features

Variance
Explanation 

% Neurons

Training 
data  
MSE

Test    
data  
MSE AIC AICc BIC

Training   
classes  

%

Test  
classes

%

Total  
classes

%

20 91.42 14 0.2042 0.2104 -6157.29 -6152.11 -5435.18 98.4 95.3 96.8

27 97.45 15 0.2014 0.2067 -6198.79 -6192.85 -5425.62 99.4 96.8 98.2

35 98.73 15 0.2005 0.2044 -6216.29 -6210.35 -5443.12 99.8 97.8 99.2

42 99.51 6 0.2005 0.2022 -6341.56 -6340.56 -6027.92 99.8 98.8 99.4

45 99.69 16 0.2003 0.2011 -6206.14 -6199.39 -5381.92 99.9 99.5 99.7

55 99.99 8 0.2001 0.2007 -6321.45 -6319.71 -5905.69 100 99.8 99.9

60 ~100 6 0.2003 0.2011 -6260.79 -6256.97 -5640.80 99.8 99.3 99.7

TABLE 9: Levenberg Marquardt based DWT.
Neurons Training data MSE Test data MSE AIC AICc BIC Training classes % Test classes % Total classes %

7 0.2007 0.2019 -6323.65 -6322.30 -5958.95 99.7 98.8 99.4

8 0.2003 0.2020 -6317.22 -6315.48 -5901.46 99.9 99.3 99.7

10 0.2001 0.2007 -6293.02 -6290.35 -5775.15 100 99.8 99.9

13 0.2000 0.2011 -6253.45 -6248.97 -5582.39 100 99.5 99.9

20 0.2002 0.2010 -6151.60 -6141.07 -5123.14 99.9 99.5 99.8
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TABLE 11: Performance of MLR based DWT and PCA.

Features

Variance
Explanation 

%
Training data  

MSE
Test data  

MSE AIC AICc BIC

Training   
classes  

%

Test  
classes

%

Total  
classes

%

20 91.42 0.1650 0.1644 -7167.55 -7167.32 -7021.67 89.7 91.3 89.9

27 95.98 0.1807 0.1793 -6790.10 -6789.69 -6593.16 95.4 94.5 95.3

35 98.73 0.1879 0.1870 -6616.56 -6615.89 -6361.27 98.5 97.8 98.4

40 99.37 0.1953 0.1944 -6453.52 -6452.65 -6161.76 99.9 99.3 99.8

52 99.95 0.1977 0.1969 -6379.52 -6378.07 -6000.23 100 100 100

54 99.98 0.1983 0 1972 -6363.55 -6361.98 -5969.67 100 100 100

59 ~100 0.1986 0.1971 -6348.34 -6346.48 -5917.99 100 100 100

61 ~100 0.1988 0. 1972 -6339.24 -6337.26 -5894.30 100 100 100

63   100 0.1981 0.1965 -6349.47 -6347.36 -5889.95 100 99.8 100

TABLE 12: Comparison of the best configurations.

Reduction
Methods Algorithms Features

Neuron 
Number AIC AICc BIC

Training 
data MSE

Test data  
MSE

Training   
class.          

%

Test  
class. 

%

Total  
classes 

%

GD 63 15 -6175.64 -6169.70 -5402.47 0.2025 0.2029 99.5 99.3 99.4

BFGS 63 18 -6123.91 -6115.38 -5197.57 0.2030 0.2074 98.6 96.3 98.3

DWT SCG 63 16 -6211.73 -6204.98 -5387.51 0.2000 0.2000 100 100 100

LM 63 10 -6293.02 -6290.35 -5775.15 0.2001 0.2007 100 99.8 99.9

MLR 63 - -6349.47 -6347.36 -5889.95 0.1981 0.1965 100 99.8 99.9

GD 57 7 -6314.15 -6312.80 -5949.45 0.2020 0.2019 100 99.8 100

BFGS 56 6 -6332.20 -6331.19 -6018.55 0.2010 0.2011 99.6 99.5 99.5

DWT+PCA SCG 59 12 -6266.43 -6262.61 -5646.44 0.2001 0.2004 100 100 100

LM 55 8 -6321.45 -6319.71 -5905.69 0.2001 0.2007 100 99.8 99.9

MLR 52 - -6379.52 -6378.07 -6000.23 0.1977 0.1969 100 100 100

having different sizes. However, similar to estimation of ANNs, a feature data matrix which was obtained 
from the automated multi-resolution decomposition using the window-widths with 512 samples at the 
six level of DWT, was considered as enough to estimate suitable MLR models. Thus, 63 of features were 
utilized as possible explanatory variables together with log-odds of outcomes. MLR models are estimated 
over data sets reduced by PCA. The best results were summarized in Table 11.

As seen from Table 11, when the number of PCs is increased in the model, the performance might impro-
ve until a certain number of PCs. However, at the high number of PCs, information criteria apparently 
penalize the complex models even classification ratios increase.

COMPARISON OF THE BEST MODELS TRAINED BY ALL THE CLASSIFIERS

Table 12 displays the best model configurations estimated by ANNs and MLR. From these results, it can 
be seen that all the models estimated by different approaches produce pretty much accuracy ratios with 
respect to training data. Nevertheless, their efficiencies seem a little bit decay over test data. Actually, this 
loss of performance is acceptable, because the test data is not introduced to ANNs before that.

In the literature, as given in Table 13, there exists many remarkable studies in which same epilepsy data 
set is handled by different approaches. In Table 13, the researchers are interested in different methodo-
logies where they need different frameworks. Hence, Table 13 exhibits only general performances of 
these methodologies with respect to training or all data sets.         
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TABLE 13: Existing approaches in literature and their performances.

Author(s) Method Dataset Accuracy (%)

Guler and Ubeyli10 Adaptive neuro-fuzzy inference system + DWT A – E 98.68

Yalcın et al.11 DWT+ SVMs A-E 99.67

Sharma et al.12 Time-frequency flexible wavelet transform + SVMs A-E 100

Bhattacharyya et al.13 Q-Wavelet + Entropy + SVMs A-E 100

Bhati et al.14 Cohen–Daubechies–Feauveau biorthogonal filter banks + ANNs A-E 99.3

Nigam and Graupe20 Non-linear preprocessing filter + ANNs A – E 97.20

Guo et al.23 Multiwavelet-entropy features + ANNs A/B/C/D – E 98.27

Martis et al.24 SampEn-DT A-E 95.7

Amorim et al.27 DWT+ ANNs+KNN+RF A-E 100.00

Ocak28 ApEn on DWT coefficients and classifier A-E 96.00

Wang et al.29 Wavelet packet entropy-hierarchical A-E 99.4

Acharya et al.30 CWT+S1+S2+PhEn+Texture-SVM A-E 96.00

Nicolaou and Georgiou32 Permutation entropy and SVMs A – E 93.55

Kannathal et al.82 Entropy + Adaptive neuro-fuzzy inference system A – E 92.22

Srinivasan et al.83 Time-frequency features + Recurrent neural networks A – E 99.60

Ataee, Avanaki, Shariatpanahi84 Wavelet features + ANNs A – E 94.00

Subasi85 Wavelet features + Expert systems A – E 95.00

Tzallas et al.86 Time-frequency analysis + ANNs A/B/C/D – E 97.73

Polat and Günes87 Fourier features + Decision trees A – E 98.72

Acharya et al.88 Non-linear parameters – ApEn, Gaussian A – E 95.00

Tzallas et al.89 Time-frequency analysis and power spectral density + ANNs A/E – E 100.00

Liang et al90 Spectral analysis and principal component analysis + ANNs A/D – E 98.74

Chua et al.91 Magnitude+PhEn, S1, and S2-GMM A-E 93.1

Orhan et al.92 Wavelet features + k-means clustering + ANNs A – E 99.60

Iscan et al.93 Cross correlation and power spectral density + SVMs A – E 100.00

Yuan et al.94 ApEn/Hurst exponent/DFA-SVMs/ANNs A-E 96.5

Mahajan et al.95 PCA, ICA+NN A-E       93.63

Gandhi et al.96 DWT-Spectral entropy+Energy-PNNs A-E 100.00

Alam and Bhuiyan97 Time-frequency analysis and higher order statistics + ANNs A-E/D – E 100.00

Zainuddin et al.98 Wavelet features + ANNs A – E 98.87

Xie and Krishnan99 Wavelet variances + Nearest neighbors A – E 100.00

Ahammad et al.100 DWT-linear classifier A-E 98.5

Das et al.101 Dual-tree complex wavelets + SVMs A – E 100.00

Chen (2014)102 Dual-tree complex wavelet-Fourier features + Nearest neighbors A – E 100.00

Acharya et al.103 ApEn, SampEn, PhEn, S1, and S2 – Fuzzy A-E 98.1

Xie and Krishnan104 DPCA+FFPC+PCPEM A-E          100

Das et al.105 Dual-tree complex wavelets + inverse Gaussian + SVMs A – E/ AB/CD – E 100.00

Li et al.106 DWT based EA+NNE A-D-E  98.78

Fu et al.107 Hilbert marginal spectrum analysis + SVMs A/B/C/D – E 98.80
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DISCUSSION

From the results of analysis, it can be concluded that the automated multi-resolution technique brings out 
the latent characteristics of epileptic seizures from EEG signals using DWT with db10 mother wavelet. 
However, the proposed approach can be easily adapted to another mother wavelet in the different cases 
as well. In the feature extraction process, the features vectors were produced by some important statistics 
where they are able to explain the behaviors of epileptic seizures over EEG signals. During the estimation 
procedure, to take into account the complexity of estimated models, RAM and time consumption; the fe-
ature matrix was reduced by means of PCA. To improve the classification performance of ANN classifiers, 
they were trained by different gradient-based algorithms. To handle over/lower fitting during the model 
estimation process, the feature matrix was separated into three subsets called as training, validation and 
test. During the estimation process of ANNs, the training algorithms were stopped automatically as soon 
as the errors over validation data set increases. Essentially, this early detection strategy helps to estimate 
more robust models. In the hidden layers, the number of neurons is determined by information criteria; 
thus the excessive complex models are automatically penalized.

In the context of MLR, the multicollinearity is a hypothetical decay and there exists a significant multi-
collinearity among the feature vectors obtained by DWT at different decomposition levels. To find out 
this multicollinearity, some robust statistics such as tolerance, VIF, Pearson, Kendall’s tau-b and Spear-
man coefficients were considered. To reduce the dimension of feature matrix, PCA provides remarkable 
contribution to MLR in terms of complexity and classification performance. To determine the number of 
components that should enter in the model, the sum of variance explanation rates was used. For instance, 
according to PCA results, the first 6 principle components account for about 70% of the total variance 
where these variances are 32.79, 17.35, 7.18, 5.22, 3.99, and 3.82, respectively. However, the models esti-
mated by MLR give better accuracy ratios at the larger variance explanation levels. Therefore, the models 
were estimated up to 90% variance levels. 

From all the analysis results above, it can be said that the performance and robustness of estimated models 
could be enhanced by feature extraction, DWT and PCA. Also, the number of neurons and PCs play im-
portant roles in the classification of EEG signals accurately. Generally, the performance of ANNs depends 
on many factors such as the network structure, number of neurons, activation functions, learning algo-
rithms and tuning parameters. Conversely, MLR allows more practical procedure to estimate the classifi-
cation models in terms of controlling and interpreting the system. Unlike ANNs, MLR needs much larger 
data set to estimate more accurate models according to the results of analysis. Namely, the performance of 
MLR decreases if their models are estimated over the feature matrices extracted at smaller window-widths 
and decomposition levels of DWT.   

CONCLUSION

Consequently, the proposed procedure is capable of making a comprehensive analysis of EEG signals in 
the context of epileptic seizures, and estimate reliable and robust models for ANNs and MLR. Especially, 
these models are able to make more accurate classification of instantaneous EEG signals received from 
new epileptic signals where they are real seizures or artificially created in the clinical environments. In 
addition, this approach can be easily applied to another epilepsy data set.

Actually, the proposed approach requires many steps such as the signal decomposition, feature extraction, 
feature selection, reducing the size of feature matrix, estimation process, selecting the best model con-
figurations, complexity of models, interpreting and discussing the results. Hence, software of devoloped 
procedure can help users to overcome these challenges exactly. In addition, to estimate more robust and 
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realiable models, more comprehensive data sets are inevitable, but collecting this kind of data is another 
big challenge for experts due to some legal restrictions. Although there are various benchmark data sets 
in the literature, they are not enough to attempt an exact time-frequency analysis and figure out all the 
patterns in the EEG signals. For this reason, this challenge prompts researchers to communicate with 
neurology institutes in terms of establishing collaboration and making more reliable analysis.

In the future direction, we are planning to focus on developing novel hyrid artificial intelligence approa-
ches. To figure out the performance of these hybrid approaches, they will be applied to more complicated 
EEG signals with high frequencies and wider time intervals. Thus, this kind of comprehensive data set 
will allow making deeply time-frequency analysis of EEG signals in the context of epileptic seizures. To do 
this, we will contact some neurology institutes and clinics, and seeking for a future collaboration. Lastly, 
we are planning to devolope a user-friendly software by MATLAB GUI. 
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