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ABSTRACT Objective: In modeling environment processes, mul-
ti-disciplinary methods are used to explain, explore and predict how the 
earth responds to natural human-induced environmental changes over 
time. Consequently, when analyzing spatial processes spatial domains, 
the spatial covariance of interest are always heterogeneous. However, 
this article proposed locally adaptive covariance for the spatial domain 
whose covariance is nonstationary in their spatial domain. The obje-
ctives of the study are to propose parametric, non-parametric and se-
mi-parametric models for nonstationary spatial structure, continuous 
model for nonstationary spatial processes whose distance is far apart 
and to propose the adaptive weighting scheme approach that generates 
the optimal value for the nonparametric and semi-parametric models. 
Material and Methods: The spatial covariances are derived by appl-
ying the concept of adaptive weighting scheme approach on the cova-
riance proposed in Nott and Dunsmuir (2002). Consequently, the local 
adaptive bandwidth for the nonstationary covariance was obtained for 
both the nonparametric and semi-parametric models. Simulations are 
conducted on the proposed model to examine the proposed model. Re-
sults and Conclusion: The results obtained are compared with existing 
models. The results indicate proposed spatial covariance are driven by 
the local bandwidths, penalty, weighted scheme, and tuning parame-
ters. The adaptive models performed better in relation to existing co-
variances in terms of their mean square prediction errors (MSPE). The 
proposed models were further applied to real life Sulphate spatial data. 

Keywords: Adaptive; locally, nonstationary; spatial covariance;  
  variability

ÖZET Amaç: Çevresel süreçleri modellerken, dünyanın zaman için-
de doğal insan kaynaklı çevresel değişikliklere nasıl tepki verdiğini 
açıklamak, araştırmak ve öngörmek için multi-disipliner yöntemler 
kullanılır. Sonuç olarak, uzamsal süreçleri incelerken uzamsal alanlar, 
ilgilenilen uzamsal kovaryans her zaman heterojendir. Bununla bir-
likte, bu makalede kovaryansı uzamsal alanlarında durağan olmayan 
uzamsal alan için yerel olarak uyarlanabilir kovaryans önerilmiştir. 
Makalenin amaçları durağan olmayan uzamsal yapılar, mesafesi çok 
uzak olan durağan olmayan uzamsal süreçler için sürekli model için 
parametrik, non-parametrik ve yarı-parametrik modeller önermek 
ve, non-parametrik ve yarı-parametrik modeller için optimal değe-
ri yaratan adaptif uyarlamalı ağırlıklandırma şeması önermektir. 
Gereç ve Yöntemler: Uzamsal kovaryanslar, Nott ve Dunsmuir 
(2002)’de önerilen uyarlamalı ağırlıklandırma şeması yaklaşımı ko-
varyans üzerine uygulanarak türetilmiştir. Sonuç olarak, hem non-pa-
rametrik hem de yarı parametrik modeller için durağan olmayan ko-
varyans için yerel adaptif band genişliği elde edildi. Önerilen modeli 
değerlendirmek için önerilen model üzerine simulasyonlar yapıldı. 
Bulgular ve Sonuç: Elde edilen sonuçlar mevcut modellerle karşılaş-
tırıldı. Bulgular önerilen uzamsal kovaryansın, yerel bant genişlikleri, 
ceza, ağırlıklı şema ve ayar parametreleri tarafından yönlendirildiğini 
göstermektedir. Uyarlanabilir modeller, ortalama karesel öngörü ha-
taları (MSPE) açısından mevcut kovaryanslara göre daha iyi perfor-
mans göstermiştir. Önerilen modeller ayrıca gerçek hayattaki sülfat 
uzamsal verilerine de uygulanmıştır.

Anahtar sözcükler: Uyarlanabilir; yerel, durağan olmayan; 
  uzamsal kovaryans; değişkenlik

Interests in spatial data analysis are increasing as a result of increasing in spatial data that are present in at-
mospheric, hydrological, environmental, agricultural and meteorological processes. For example, the amount 
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of contamination at any given location depends on the amount of contamination in the surrounding locations 
prior to that period and varies. Like the meteorological processes such as; synoptic wind patterns and orograp-
hic effects exhibit inherently nonstationary processes that vary.1-3 Thus, the understanding of the underlying 
spatial structures of the processes relies on variogram and covariance. But most methods of obtaining such 
spatial variogram and covariance assumed stationarity.4  This often negates the nonstationary spatial variogram 
and covariance obtained in environmental, geological, agricultural and ecological processes. Consequently, 
there is need to study the nonstationarity that exist in these spatial processes.

The nonstationary processes in spatio-temporal processes can be observed in space and time framework. Let 
x1, x2,... xn be spatial locations and Y(x) be a spatial process in the Euclidean space, where x 𝑑. Then, a spatial 
process say, Y(x) is nonstationary if either the spatial covariance Cov�Y(xi), Y(xj)�i, j = 1,2,3,...n depends on 
the locations xi and xj

𝑑 or E�Y(x)� varies over the spatial field. Our focus shall be on nonstationarity that 
rises from the heterogeneous correlation between observations that are separated in the same space lags, with 
a constant mean and variance. This assumption of nonstationarity is reasonable as large scale spatially varying 
means and variances are often removed before analyzing the dependence structure that exist in the spatial 
process Y(x). Nonstationary spatial process can be diagnosed by examining the variability that exists in the 
empirical covariances at the same space lags. Large variability indicates nonstationarity.

Recently, modelling nonstationarity has received more attention over the years due to higher demands in pra-
ctice. For example, nonstationary modelling framework was proposed through a deformation technique.1,5-7   
A covariance for a nonparametric model for variogram using the approach of convolution by representing 
the random field as a linear piecewise structure was proposed.8 A more flexible nonstationary model based 
on convolution of stationary spatial processes using spatially varying kernels was proposed in literature.9-11 A 
model based on the convolution method that allowed the latent process to be dependent was also proposed.2,12  
The generalized kernel convolution approach to a class of nonstationary covariance functions also adopted 
in literature.13 13 A nonstationary model in space using the concept of dimension expansion method was also 
examined.14 This was further examined using a thin-plate spline method to obtain the nonstationary covariance 
that exits both in space and time.4 The nonstationary covariance by using latent space approach by projecting 
the C dimension into 2D correlation structure using the covariate in the covariance.5,15 Some examples of 
latent space methods for generating spatial covariance are found in literature.16-19 A nonstationary covariance 
through stochastic partial differential method that allows the explanatory variables to be added to the structure 
was also proposed by some researchers.20 A nonstationary covariance for nonparametric variogram through 
spectral representation and using a quadratic programming to solve the regularized inverse problem by emp-
loying generalized spline approach to estimate the spectrum was also proposed.21 An optimal discretization 
nonstationary covariance for nonparametric variogram and covariogram with a Fourier-Bessel matrix us used 
in the literature.22 A covariance for a semi-parametric model using B-spline approach to obtain the linear com-
bination of the threshold was also observed in some literature researched.23

The advent of big data, led many to many to proposed other predictive models that make the computation 
feasible while carrying out nonstationarity modelling.24-29 

This study proposed a locally adaptive nonstationarity in space for parametric, non-parametric and semi-pa-
rametric models, whose variability changes with location along with some asymptotic properties. Our model 
demonstrates advantages over the nonstationary spatial covariance in some existing literature researched as 
well as a combination of nonstationary spatial covariance with a stationary temporal effect.3,4,14

The article is organized as follows: Section 2 is a detail review of some existing nonstationary spatial 
process. Section 3 studies the parametric, nonparametric and semi-parametric nonstationary models, while 
Section 4 applies the nonstationary model to gas pipeline data and Section 5 provides the concluding remarks.
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MATERIAL AND METHODS

REVIEW OF MODELS FOR NONSTATIONARY PROCESSES IN SPACE

Let x1, x2,... xn be the spatial locations in domain 𝑑 and Y(x1), Y(x2),... Y(xn) the spatial processes in the spatial 
locations. Then, the space domain Y (.) can be expressed in terms of covariogram as

Var (Y(xi), Y(xj)) = Var (Y(xi)) + Var (Y(xj)) - 2Cov (Y(xi), Y(xj)) (1)

with the variogram defined as

y�xi, xj� =
 

1
2

E�Y�xi� - Y�xj��2   
i = 1,2,3,...n. j = 1,2,3,...n (2)

A space process Y ��x, z�� for z latent dimensions with a dimension p using the lasso-penalized least squares 
given as

where �𝑑i,j�X,Z’�� is the i, jth  elements of the distance matrix of the augmented locations �X,Z�i,j are the moment 
estimates of yθ(.), Zk is the kth column of Z, �� . ��1 is the L1 norm.14 The time is treated as replicates. 

A spatial covariance for a process as a complete monotone function is given as 

(4)Cov (h) = � 𝛽j fj
�q� (h2)  for q = p-1   

where fj
�q� is obtained as a B-spline of Cox-de Boor recursion formula fj

ı (x) such that for ı  1.30

(5)fj
ı (x) =

 

m + 1
ı  

�fj
ı-1�x + 1�-j-p   fj

�ı-1��x� + j-p + ı + 1 fj + 1  �x� - fj + 1  �x + 1��

with

(6)fj
�0� (x) =

 

m + !
x + 1  

�j-p + 1 - j-p    �,   if  0j-p, j-p + 1 1

otherwise  0

The 𝛽 = (𝛽1,..., 𝛽m+p)
T are the parameters that are obtained as a weighted least squares (WLS)

(7)𝛽WLS = argmin𝛽j0
�wj �CE (hi) -�𝛽j fj

�q� (h2)�
2

(3)θ,Z = argmin ��υi.j - yθ�𝑑i,j(X,Z')��2 + λ ���Z'k��1  

with wi is a weighted scheme given as

(8)wi =
 

�N(hi)�
�1-CE (hi)�

2 ,
 
  i = 1,2,3,...n
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where N(hi) is the set of data that are pair with �N(hi)� as the cardinality of N(hi) for the distance lag hi  is the 
distance lag.31  The drawback of their method is the sensitivity of the spline fitting to the number of knots and 
thus required the Akaike information criterion and Bayesian information criterion respectively to determine 
the location and number of knots.

A nonparametric variogram through spectral representation approach using quadratic regularized inverse.21  
Their covariance was defined as

(9)2y (h) = �0
 �1-J0 (wh)�r(w)f (w)dw,   hw0

where J0 (.) is the Bessel function of first kind of order zero, r(w) = 
1-w2

w2
, w(0,) is the regularization fun-

ction and f (w) 0; �0
 

f (w)dw< a non-decreasing function on (0,).

The problem with the equation (9) is that it requires a numerical solution approach to perform its computations 
with a weighted sum of  w = 2N0(N0-1), where N0 are the nodes.

Furthermore, the nonstationary covariance for the spatial process with unknown distribution shall be emp-
hasized in the next section. It is evident that the spatial process in a single unit is same, but varies from one 
location to another. The variable or locally adaptive bandwidths for each of these spatial locations shall also 
be obtained in next section.

PARAMETRIC NONSTATIONARY SPATIAL MODEL

Statistical modeling of spatial processes is often based on spatial covariogram of the spatial processes.

Let x1, x2,... xn be the spatial locations in domain 𝑑 and Y(x1), Y(x2),... Y(xn) the spatial processes in the spatial 
locations. Minimizing the objective of as

(10)Yi(x)-mT  (x1) Bi
-1 Yi   0,   for i = 1,2,3,...n.

Subject to the constraint

(11)Bi
-1  0,   i = 1,2,3,...n.

where Yi(x) = n x 1 column vector of independent nonstationary realizations; mT  (x1) = i(x - xi)a n x 1 co-
lumn vector of cross-covariance between the sample at the observed and sample at the unobserved locations;  
Yi = (Yi (x1), Yi (x2),...,Yi (xn))

T; 𝛽i = i(xj - xk), n x n covariance matrix between the process at locations xj and xk 
for j,k = 1,2,3,...n. δi(x) is a column vector that has a zero mean nonstationary error term.

Thus, by Karush-Kuhn-Tucker method we defined the spatial minimization problem above as

(12)L(Bi
-1, λ) = ��Yi (x) - mT  (xi) Bi

-1Yi��2 + λi��Bi
-1��

2

2     
λi�0,1�

where, λi are n x 1 vectors of adaptive turning parameters such that

λi = 
� � Bpj - Bi

(n - 1)� � Bpj

.

The solution to the optimization problem in equation (12) is given as

(13)δλi �xi, xj� = �xi - xj� - mT  (xi)Bi
-1 m�xj� - 2λi� Bi

-1�T 
Bi

-1     i, j = 1,2,3,...n
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where (xi - xj) is the variance of Yi (x) called the sill.

For some possible values of λi equation (13) reduces to model one.3 When λ0=0. When λi=YiYi
T mT (xi) m

T (xj). 
Equation (13) yields

(14)δλi �xi, xj� = �xi - xj� - 3mT  (xi)Bi
-1 m�xj�     i, j = 1,2,3,...n.

Otherwise, for λi = 1, equation (13) becomes

(15)δλi �xi, xj� = �xi - xj� - mT  (xi)Bi
-1 m�xj�- 2�Bi

-1�T Bi
-1  i, j = 1,2,3,...n.

It thus follows that equation (13) depends on the adaptive turning parameters. Hence, we have been able to 
propose an optimized adaptive spatial covariance that considered the lags as an important factor for nonstati-
onary.

NONPARAMETRIC NONSTATIONARY SPATIAL MODEL

Statistical modelling of spatial processes is often based on Gaussian processes. This facilitates prediction, but 
normality is not necessarily an adequate modelling assumption for process whose distribution is uncertain. 
Hence, a spatial process can be expressed in the nonparametric form if the spatial covariance is positive defi-
nite. Consequently, the nonparametric form of the adaptive nonstationary process is obtained by minimizing

(16)Lnp(Bi
-1, λ) = ��Yi (x) - mT  (xi) Bi

-1W0Yi��2

2 + λi��Bi
-1��

2

2     
λi�0,1�

where W0 = diag�d01, d02, d03,..., d0n �an n x n matrix such that d0i  are the simplified Gaussian kernel weights 
for the locations x1, x2,... xn, given as

d0i  =
 

Ki�
�x0 - xi�

bi
2

�

�
 
Ki�

�x0 - xi�
bi

2
�

 where bi are the adaptive local bandwidth. The K is a kernel function given as

Ki�
�x0 - xi�

bi
2

� = exp�- �
�x0 - xi�

bi
2

 � � . Following same process, we can express equation (16) as

(17)Q �Bi
-1� = �Cov (h) - mT (xi)Bi

-1 Yi �
T W0

 �Cov (h) mT (xi)Bi
-1 Yi �

Thus, the resulting nonparametric spatial covariance has explicit representation as

(18)Covnp �xi, xj� = �xi - xj� - mT (xi)Bi
-1 W0

 m (xj) - 2λi�Bi
-1�T 

Bi
-1     i, j = 1,2,3,...n.

Provided mT (xi)Bi
-1 W0

 m (xj) is positive definite. Furthermore, investigating the behaviour of the adaptive vec-
tors of tuning parameters λi at 0,1, and Yi Yi

T W0
 mT(xi) for 0  i  n. If λi = 0 and W0 = 1 , equation (18) reduces 

to model one.3 Otherwise, for λi = 0

(19)Cov �xi, xj� = �xi - xj� - mT (xi)Bi
-1 W0

 m (xj)     i, j = 1,2,3,...n.

For λi = 1, equation (18) becomes
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(20)Covnp1 �xi, xj� = �xi - xj� - mT (xi)Bi
-1 W0

 m (xj) - 2 �Bi
-1�T 

Bi
-1   i, j = 1,2,3,...n.

and for λi = Yi Yi
T W0

 mT (xi)m (xi) and λi  0. equation (18) becomes

(21)Covnp2 �xi, xj� = �xi - xj� - 3mT (xi)Bi
-1 W0

 m (xj)   i, j = 1,2,3,...n.

The above models are the adaptive nonparametric models when stationarity and distributions are violated.

In the previous application of the adaptive nonparametric models, the spatial processes in the neighbourhood 
of the locations were used to predict the spatial variable at the unsampled location. Suppose the processes are 
not within the neighbourhood, then, we shall propose a model for such processes through kriging.

NONPARAMETRIC CONTINUOUS KRIGING FOR NONSTATIONARY SPATIAL MODEL

Prediction of a spatial variable at an unobserved location often depends on the available variable in the nei-
ghbourhood of such sample. Now, suppose the locations xi and xj are far apart from the unobserved location, 
then, the covariance �xi, xj� approaches zero as the lag h tends to infinity. Hence, a quantity η is introduced 
to penalize the parameter Bi

-1 such that such observations within such neighbourhood are used to obtain the 
predicted variables. Thus, minimize the estimated variance subject to the penalized quantity using lasso reg-
ression approach

(22)L �Bi
-1, λ, � = Yi

T �x� Yi
 �x� - 2Yi

T W0
 mT �xi� Bi

-1 Yi + Yi
T W0 �Bi

-1�T
m �xi� mT �xi� Bi

-1 Yi - 2λi Bi
-1- 2η Bi

-1 �Bi
-1�T

For some   �0,1�, λi  �0,�, η  �0,1�. The partial derivatives of equation (22) with respect to the penalty 
and the mixing parameters, and the spatial weights give the nonstationary spatial covariance model for the 
continuous processes as

(23)Covnpc �xi, xj� = �xi - xj� - mT (xi)Bi
-1 W0

 m (xj) - 2λi�Bi
-1�T

- 2η �Bi
-1�T

Bi
-1   i, j = 1,2,3,...n.

Theorem 3.1

Let f (x - xi) = exp �-�� x - xi ��
2�be the distribution function and υi (x) =

 

f (x - xi)

� f (x - xi)
 be the weight function, 

then υi (x) approaches zero as the �� x - xi ��   for i = 1,2,3,...n.

Proof of Theorem 3.1 

Since υi (x) are weight functions, then, it must sums up to one. Thus,   
f (x - x1) = exp �-�� x - x1 ��

2�, f (x - x2) = exp �-�� x - x2 ��
2�,...,f (x - xn) = exp �-�� x - xn ��

2�. Let  

A = � f (x - xi) = exp �-�� x - x1 ��
2� + , exp �-�� x - x2 ��

2� + exp �-�� x - x3 ��
2� +...+ exp �-�� x - xn ��

2�,

However, υ1 (x) =
 

exp �-�� x - x1 ��
2�

A
, υ2 (x) =

 

exp �-�� x - x2 ��
2�

A
,...,υn (x) =

 

exp �-�� x - xn ��
2�

A

Hence, �
 
υi (x) =�

 

exp �-�� x - xi ��
2�

A
= 1. 

Next, we shall show that 
exp �-�� x - xi ��

2�
A

  0. We observed that υi (x) =

 

exp �-�� x - xi ��
2�

� exp �-�� x - xi ��
2
�

. But   

exp �-�� x - xi ��
2� = 0, as �� x - xi ��

2 
 . Clearly, υ1 (x)  0

SEMI-PARAMETRIC ADAPTIVE MODEL FOR NONSTATIONARY SPATIAL STRUCTURE

Semi-parametric nonstationary spatial covariance involves fitting spatial processes that is robust to mis-spe-
cification through an adaptive mixing parameter λi.The adaptive mixing parameters λi satisfies the condition 
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0  λi  1. Let x1, x2,... xn be the spatial locations in domain 𝑑 and Y(x1), Y(x2),... Y(xn) the spatial processes in 
the spatial locations. Hence, a linear combination of the parametric and nonparametric models will yield

(24)L �Bi
-1, λ� = �� Yi

 �x� - mT Bi
-1 Yi ��2

2 
+ λi��� Yi

 �x� - mT �xi� Bi
-1 W0 Yi��2

2 
��1-�� Yi

 �x�- mT �xi� Bi
-1 W0 Yi��2

2 
�

where 1 is n x 1 column vector and W0 is a diagonal matrix of kernel weights. However, for convenience, the 
computational form of equation (24) for the locations i, j is given as

(25)Covsp �xi, xj� = �xi - xj� - mT (xi)Bi
-1 m (xj) + 2λi�mT (xi) Bi

-1 W0 m (xj)��1-mT (xi)
 Bi

-1 m(xj)�   i, j = 1,2,3,...n.

It is clear from the theorem (3.1) that we do not need numerous sampled values to predict a variable at the 
unsampled location. Thus, for our proposed nonstationary covariance Cov �xi, xj�, simple kriging variance for 
nonstationary spatial process can be easily obtained as

(26)�
 
υi (x)Cov�xi, xj�

The simple kriging predictor is given as32

(27)�
 
υi (x) mT (xi)

 Bi
-1 Yi (x)

The nonparametric and semi-parametric nonstationarity depend on the bandwidths as the smoothing parame-
ter. Hence, we shall derive the bandwidths such that they sum up to one.

ADAPTIVE LOCALLY BANDWIDTH

The performance of Local Linear Estimator depends on how the bandwidth bi are chosen. Hence, we choose 
the bandwidth bi 

opt = ηopt bi where ηopt is an optimal real number that minimizes the mean square prediction 
error (MSPE).

Theorem 3.2 

Let yi for i = 1,2,3,...n be the set of individual realization from a spatial process from the locations xi such 

that γ = � yi . Then, θi = 
yi

γ
 it implies that �θi =1. 

Proof of Theorem 3.2

Since γ = � yi, then, �θi = �
yi

γ
 = 

� yi

γ
It is easy to see that

� γ = 1

Thus, we generate the locally adaptive bandwidths in the following manner:

Let yi for i = 1,2,3,...n are the spatial processes observed at the locations xi with γ =� yi. Let the weight be 
denoted by

θi =
 

yi

γ  
i = 1,2,3,...n (28)

Clearly,

(29)� θi = 1
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Suppose we denote the local bandwidths by bi such that � bi= 1. Then, we can represent the local bandwidths 
as

bi = (1 - θi ) = �1 -
 

yi

γ
� =�

γ - yi

γ
�

   
i = 1,2,3,...n (30)

Taking sum of both sides of the equation (30), we have:

(31)� bi =� �
γ - yi

γ
�   i = 1,2,3,...n

When equation (31) is simplified, we have

(32)� bi = 
nγ - � yi

γ
 = 

nγ - γ

γ
 = (n - 1)

Obviously, � bi  1. However for � bi = 1, we multiply the right-hand side of equation (32) by 
1

n - 1
. Thus,

(33)� bi =� � γ - yi

γ
�� 1

n - 1  
�

 
=� γ - yi

γ(n - 1)

Now, the local bandwidth is denoted as

(34)bi =
γ - yi

γ(n - 1)    
i = 1,2,3,...n

provided,

(35)0  

γ - yi

(n - 1)  


 
1

   
i = 1,2,3,...n

RESULTS

SIMULATION STUDY

The behavior of the nonstationary covariance of the adaptive covariance is investigated by conducting simulation 
studies with the aid of Matlab and R software. Datasets were generated from uniform distribution with replication 
number n = 1000 random samples. The Mean Square Prediction Error (MSPE) at different locations was used to 
evaluate the prediction performance of the different models with 

MSPE = 
1
n2

� � �Y (xij) - Y (xij)�
2
   i = 1,2,3,...n

Table 1 reports simulated results for the adaptive covariance proposed with fixed and locally adaptive parame-
ters. The adaptive covariance is fixed if the values of the parameters are kept constant in all spatial locations.
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We shall apply real life spatial data to examine the performances of the proposed adaptive models and further 
compare the results with existing models in literature.

REAL LIFE DATA APPLICATION

To demonstrate the potentials of the adaptive nonstationary covariance, we applied the nonstationary models 
to data set and make comparison with existing models.  The datasets sampled for sulphate in the event of oil 
spills arising from the operation of the construction of “6 x 40” Km Tuomo To Ogbainbiri Oil and Gas Pipe-
line Project in South-South of Nigeria. The datasets are obtained as secondary data from the environmental 
impact assessment conducted by Department of Environmental and Toxicology, Federal University of Petro-
leum Resources, Effurun, Delta State, Nigeria, FUPRE (2018). The sulphate data are measured in mg/l. The 
exponential continuity function was used to evaluate the nugget effect, sill and the range parameters. Figure 
1(a)-1(c) through Figure 2(a)-2(c) are the plots of the real life data for semivariograms and covariograms for 
exponential, spherical and Gaussian models.

DISCUSSION

In this article, an adaptive model for nonstationary spatial covariance has been explicitly derived. However, 
the adaptive smoothing parameter was also presented. Performances of the smoothing parameter based on 
MSPE selection criteria are compared with the help of a simulation study and real life data.

However, based on the simulation in Table 1, the adaptive parameters in NP 3 have the smallest standard error 
in MSPE with same mean. The adaptive covariance has the lowest bandwidth compare to the fixed. More so, 

TABLE 1: Mean and standard error (in parentheses) of the Mean Squared prediction Error (MSPE) performance for adaptive 
covariance.

Fixed Adaptive

Simulated 
Models b 𝜆 η 𝛕 MSPE 𝑏𝑜𝑝𝑡 η𝑜𝑝𝑡 τ𝑜𝑝𝑡 MSPE𝑜𝑝𝑡

APEx 1 609.5511(9.5858e+03) 608.1271(9.5858e+03)

APEx 2 609.6286(9.5858e+03) 608.1271(9.5858e+03)

APEx3 611.0231(9.5858e+03) 608.1287(9.5858e+03)

APSp1 6.9321(5.6509e-09) 6.9321(5.6509e-09)

APSp 2 6.9321 (5.6509e-09) 6.9321(5.6509e-09)

APSp 3 6.9321 (5.6509e-09) 6.9321(5.6509e-09)

APGa 1 427.4226(1.0474e+04) 426.0120(1.0474e+04)

APGa 2 427.6278(1.0474e+04) 426.0120(1.0474e+04)

APGa 3 428.9605(1.0474e+04) 26.0136(1.0474e+04)

NP 1 0.7345 41470 0.0085(2.0413e-09) 0.0010 28000 0.0085(2.5237e-11)

NP 2 0.6391 20392 0.0086(0.0019e-00) 0.0080 17000 0.0085(1.6491e-10)

NP 3 0.7832 0.2988 10000 0.0085(2.3004e-04) 0.0070 18000 0.0085(1.7901e-11)

NPC 0.4565 0.9784 30500 0.9978 0.0085(5.3283e-05) 0.0050 22000 0.0764 0.0085(2.5237e-11)

SAPEx 0.7888 0.5841 17649 3.5251e+03(1.047e+04) 0.0020 15000 0.5181(1.0474e+04)

SAPSp 0.7888 0.8544 23040 3.7577e-04(5.6509e-09) 0.0100 16800 0.0085(5.6509e-09)

SAPGa 0.7888 0.5988 24000 4.4802e+03(9.586e+03) 0.0100 23700 0.7396(9.5859e+03)

AP: Adaptive Parametric, NP: Nonparametric, SAP: Semi-parametric Adaptive Parametric, Ex: Exponential, Sp: Spherical, Ga: Gaussian. 1, 2, 3 indicates 
λi=1, λi≥0, λ≠0.
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the fixed tuning parameter increases with the increase in parameters. The semi-parametric models have the 
lowest standard error in spherical model in all replicates for both adaptive and fixed models and its standard 
error increases as the replicate increases.

Firstly, the MSPE of parametric models in Table 2 shows that Nd and PM 2 have same standard error in sphe-
rical models in all replicates and increases as the replicate increases. The true spherical standard error is the 
largest across all replicates and decreases as replicate increases. The mean and standard error of Gaussian PM 
1 increases as the replicate increases.

In addition, in Table 3, the parameters of the CSB 3 have the lowest standard error. The standard error of CSB 
1 and HHC models increases as the replicate increases.

In Figure 1(a)-1(c), the nugget effect C0 equal zero with a range parameter,  = 70000, σ2 = 8 and sill of 
108. 

Furthermore, the results of the real life application show that the mean of the locally adaptive and the 
fixed parameters are same in all cases for adaptive and fixed exponential models in Table 4. The fixed 
NP 2 has the least bandwidth. We quickly observed that the more the tuning parameter, the less the ban-
dwidth; thus, the correlation. The bias of the variable bandwidth and tuning parameters are smaller than 
the fixed bandwidth. In Table 5, the exponential model has the smallest standard error in PM 1 and Nd 
models. The Gaussian model has the largest standard error in all the models. Spherical PM 1 has the 
smallest mean.

However, in Table 6, the mean of the HHC nonparametric model is the smallest but the standard error of the 
CSB models is the smallest.

TABLE 2: Mean and standard error (in parentheses) of the Mean Squared Prediction Error (MSPE) for parametric model.

Model Spherical Gaussian Exponential

True 191.14(9.3939e+00) 0.9760(8.9778e-04) 20.867(0.0109e+00)

Nd 6.9321(5.6509e-09) 426.0103(1.0474e+04) 608.1255(9.5858e+03)

PM 1 6.9324(5.0858e+08) 1.2919e+03(9.43e+04) 1.8382e+03(8.63e+04)

PM 2 6.9321(5.6509e-09) 426.0120(1.0475e+04) 608.1271(9.5863e+03)

Nd: Nott and Dunsmuir, PM: Parametric Model, 1, 2 indicates  λi=1, λi≥0.

TABLE 3: Mean Squared Prediction Error (MSPE) performance for nonparametric model.

Nonparametric Models Mean Standard Error

CSB 1 16.9598 1.5123e+05

CSB 3 16.9913  4.8023e-05

HHC 8.4917 356.1304

(HHC), (CBS) Nonparametric Model 1 and 2. 21,33-34
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FIGURE 1(a): Exponential semivariogram oil and gas pipeline data.

FIGURE 1(b): Spherical semivariogram oil and gas pipeline data.

FIGURE 1(c): Gaussian semivariogram oil and gas pipeline data.
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FIGURE 2(b): Spherical covariogram oil and gas pipeline data.

FIGURE 2(a): Exponential covariogram oil and gas pipeline data.

FIGURE 2(c): Gaussian covariogram oil and gas pipeline data.
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TABLE 4: Mean and standard error (in parentheses) of the Mean Squared Prediction Error (MSPE) of Tuomo and Ogbainbiri oil 
and gas pipeline data for adaptive models and parameters.

Fixed Adaptive

Models b 𝜆 η 𝛕 MSPE 𝑏𝑜𝑝𝑡 η𝑜𝑝𝑡 τ𝑜𝑝𝑡 MSPE𝑜𝑝𝑡

APEx 1 1.1161(8.7483e-16) 1.1161(7.6339e-16)

APEx 2 1.1161(8.7483e-16) 1.1161(6.9973e-16)

APEx 3 1.1162(8.7483e-16) 1.1161(7.0210e-16)

APSp 1 0.6191(2.3405e-08) 0.6191(2.3429e-08)

APSp 2 0.6191(2.3405e-08) 0.6191(2.7969e-08)

APSp 3 0.6191(2.3405e-08) 0.6191(2.7971e-08)

APGa 1 1.2426e+07(1.6764e+06) 3.6644e+06(1.6498e+06)

APGa 2 4.5358e+06(1.6764e+06) 4.5357e+06(2.1778e+06)

APGa 3 5.6240e+06(1.6764e+06) 3.6643e+06(2.4633e+06)

NP 1 0.2204 68 0.9764(2.4036e-13) 0.0279 50 0.9764(9.5086e-14)

NP 2 0.0765 56 0.9764(1.1621e-10) 0.0057 67 0.9764(3.9603e-13)

NP 3 0.1519 0.2988 93 0.9764(1.4544e-11) 0.0296 81 0.9764(2.6647e-14)

NPC 0.1271 0.9784 67 0.9978 0.9764(2.4924e-11) 0.0385 70 0.5764 0.9764(3.8887e-14)

SAPEx 0.5588 0.9711 50 1.1154 (3.5684e-07) 0.0286 38 1.1161 (3.3728e-07)

SAPSp 0.5588 0.7734 54 0.6155 (2.3405e-08) 0.0290 45 0.6191 (2.2547e-08)

SAPGa 0.5588 0.8788 51 4.5351e+06 (136.6298) 0.0277 47 4.5356e+06 (1.2249e+03)

AP: Adaptive Parametric, NP: Nonparametric, SAP: Semi-parametric Adaptive Parametric, Ex: Exponential, Sp: Spherical, Ga: Gaussian. 1, 2, 3 indicates 
λi=1, λi≥0, λ≠0.

TABLE 5: Mean and standard error (in parentheses) of the Mean Squared Prediction Error (MSPE) of Tuomo and Ogbainbiri oil 
and gas pipeline data for parametric models.

Models Spherical Gaussian Exponential

True 191.14(939.39e-00) 2.9582e+17(3.8126e+32) 20.8665(1.089e-00)

Nd 0.6191(2.3405e-08) 4.5356e+06(1.6764e+06) 1.1161(8.7483e-16)

PM 1 0.0953(2.1064e-08) 1.3607e+07(1.5108e+07) 5.3010(7.8734e-16)

PM 2 0.6191(5.0899e-05) 1.9232e+08(5.9590e+36) 1.1161(4.2670e-05)

Nd: Nott and Dunsmuir, PM: Parametric Model, 1, 2 indicates  λi=1, λi≥0.

TABLE 6: Mean and standard error of the Mean Squared Prediction Error (MSPE) of Tuomo and Ogbainbiri oil and gas pipeline 
data for Huang et la. (2011), Cherry et al. (1996) and Shapiro Botha (1991)  nonparametric models.

Nonparametric Models Mean Standard Error

CBS 1 70.0285 7.3037e+04

CBS 2 68.5761  3.8341e-08

HHC 34.1647 1.9117e+04

(HHC), (CBS) Nonparametric Model 1 and 2. 21,33-34

CONCLUSION

We have derived the concept of locally adaptive models for nonstationary covariance spatial processes. The 
idea allows each location to be fitted with its own tuning parameters instead of adopting a unified tuning pa-
rameter across all locations. Furthermore, this concept produces a simple way to obtain a valid nonnegative 
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definite covariance function irrespective of a given covariance matrix. On comparing the results with existing 
covariance, the adaptive covariances has smaller value for bias and produce an estimate for nonstationary spa-
tial covariance that is better than the covariance and the other classical existing covariance.3
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