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As Donoho stated, this century can be described as the data century.
1
 In environments such as cloud, 

internet or electronic records systems, new information is recorded every second and huge data repositories 

are created. This exposes researchers to very large databases that contain a lot of information hidden in high 

dimensions. In order to reveal hidden information and patterns, data mining algorithms have been offered.
2,3

 

In parallel with the rapid development of technology, new tools are being developed to solve different 
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ABSTRACT Objective: Nowadays, “high dimension low sample 

size (HDLSS) settings” is very popular in many areas such as 
genetics, bioinformatics, medical imaging. In this study, it was 

aimed to investigate the classification performance of Random 

Ferns, which is a relatively new classifier, on HDLSS settings with 
different characteristics. Material and Methods: By simulation 

studies, artificial data sets that have different characteristics in 

terms of dimension, sample size, correlation structure, noise ratio 
and prevalence, were generated. Each scenario was iterated for 

1,000 times and, classification performances of Random Ferns has 

been compared with support vector machines (SVM), which stand 
out with its high classification performance. Results: The 

performance variation of Random Ferns differs from SVM. It 
performed better at small sample size (n=20). When the F values 

are examined, it is seen that the classification performance of 

Random Ferns in the case of imbalanced distribution does not 
change much according to the balanced distribution situation and is 

higher than SVM. It has also been observed that high success as 

was expected in the classical data structure cannot be achieved. 
Conclusion: It is noteworthy that Random Ferns outperforms, 

especially in balanced distribution and small sample sizes. It is 

thought that this method, which does not have many applications in 
the field of health, will contribute to studies where the number of 

observations is quite low. 
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ÖZET Amaç: Günümüzde “yüksek boyut düşük örneklem 

genişlikli (YBDÖG) düzenler”; genetik, biyoinformatik, tıbbi 
görüntüleme gibi birçok alanda oldukça popülerdir. Bu çalışmada, 

nispeten yeni bir sınıflandırıcı olan Random Ferns algoritmasının 

farklı özelliklere sahip YBDÖG yapılar üzerindeki sınıflandırma 
performanslarının araştırılması amaçlanmıştır. Gereç ve 

Yöntemler: Benzetim teknikleri kullanılarak boyut, örneklem 

genişliği, korelasyon yapısı, gürültü oranı ve prevalans açısından 
farklı özelliklere sahip yapay veri setleri üretilmiştir. Her bir 

senaryo 1.000 kez tekrarlanmış ve Random Ferns algoritmasının 

sınıflandırma performansı, yüksek sınıflama başarısı ile bilinen 
destek vektör makineleri (DVM) ile karşılaştırılmıştır. Bulgular: 

Random Ferns’in performans değişimi DVM’den farklıdır. En 
belirgin özelliği, küçük örneklem düzeylerinde (n=20) daha iyi 

performans göstermesidir. F değerleri incelendiğinde, dengesiz 

dağılım durumunda Random Ferns’lerin sınıflandırma 
performansının dengeli dağılım durumuna göre çok fazla 

değişmediği ve DVM’den daha yüksek olduğu görülmektedir. 

Klasik veri yapılarında olduğu gibi yüksek başarının ise 
sağlanmadığı da görülmüştür. Sonuç: Random Ferns’ün özellikle 

dengeli dağılıma ve küçük örneklem genişliğine sahip yapılarda 

daha iyi performans göstermesi dikkat çekmektedir. Sağlık alanında 
fazla uygulaması olmayan bu yöntemin, gözlem sayılarının oldukça 

düşük olduğu çalışmalara katkı sağlayabileceği düşünülmektedir. 
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problems in different disciplines. Such as in microarray gene expression studies, the expression levels of 

thousands or even tens of thousands of genes belonging to an individual are measured simultaneously and 

disease-related genes are determined. This allows the development of treatments for many complex diseases. 

However, the high cost of analyses with these tools, which we encounter in many fields such as genetics, 

medical imaging, proteomics, and spectroscopy, limits the researchers in the number of observations.
4,5

 This 

leads to the emergence of data structures in which the number of observations is much lower than the 

number of variables as called high dimensional low sample size (HDLSS) settings.
6-8

 However, there are 

some problems in the analysis of these settings whose importance is increasing.
9
 As is known, classical 

multivariate statistical methods were generally developed to make an inference in data sets with a small 

number of well-defined variables and much more observations than the number of variables. Inability to 

provide the assumptions and the curse of dimensionality render classical approaches inadequate in the 

analysis of HDLSS settings.
10

 Also, it is important to examine the performances of machine learning 

algorithms, which were originally developed for high-dimensions, in cases where the number of 

observations is low. Even though different studies have been conducted regarding the geometric structures of 

HDLSS settings, there is a need for comprehensive studies showing the effects of changes in the 

characteristics of these settings on the classification performances of current machine learning 

algorithms.
11,12 

In this study, it was aimed to evaluate the Random Ferns (RFerns) classifier on HDLSS settings. Within 

the scope of this, artificial data sets that have different characteristics in terms of dimension, sample size, 

correlation structure, noise ratio which is especially important in HDLSS settings, and prevalence were 

generated and classification performances of RFerns has been compared with support vector machines 

(SVM), which stand out with its high classification performance. 

RANDOM FERNS 

RFerns is a relatively new machine learning algorithm. It is a simple and effective algorithm developed to 

determine congruences in images on two screens.
13

 It is especially designed to be used instead of trees for 

classification of parts in image recognition analysis. It is stated that the method is simpler and faster than 

trees and is at least as reliable as them.
14

 RFerns bases its main idea on the Semi-Naive Bayes algorithm. 

Objects are classified with non-hierarchical structures called “ferns.” In RFerns, branching is top-down 

similar to Random Forest, but there is no hierarchical order among the variables used in branching. In this 

method, each fern contains binary test sets and the binary tests used as classifiers are chosen randomly. 

These tests are converted into probabilities to determine which class to assign the parts/images of interest 

and the results are combined with the Naive Bayes approach. In the learning phase, these sequential test 

sets are applied to all observations. And, leaves contain posterior probabilities. In RFerns, d variables are 

divided into m small sets of s size and it is assumed that these sets, called ferns, are completely 

independent from each other, but that the variables in the set are related. With the Semi-Naive Bayes 

approach, since the relationships within each fern are considered and no relationship is assumed between 

the ferns, both the simplicity of the standard Naive Bayes are preserved and the correlation balance is 

provided.
15,16

  

RFerns was adapted by Kursa to work with both continuous and categorical variables as well as 

imbalanced distributions.
17

 Thresholds values for continuous variables and sub-category groups for 

categorical variables are randomly determined to preserve the stochastic nature of the method. For 

continuous variables, the average of two random values of the relevant variable is used. In categorical 

variables, a category is randomly selected, except for the category that does not contain all or none of the 

observations in all categories of the relevant variable. It is stated that such separation protects from 

overfitting and reveals interactions that are not easily understood. 
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    MATERIAL AND METHODS 

In this study, artificial data sets derived by simulation techniques were used to evaluate the performance of 

classification methods. All analyses were performed in R software (http://www.R-project.org) utilizing the 

following functions: ksvm (in ‘e1071’ packages), and rFerns (in ‘rFerns’ packages). In artificial data sets, 

75% of the observations are splitted as training sets and 25% as test sets. Each scenario was repeated 1,000 

times, and the performances of classifiers on the test sets were reported as an average. 

SCENARIOS 

Considering the HDLSS settings, scenarios were created according to the sample size, the number of 

variables (dimensions), the relationship between dependent and independent variables, the relationship 

between independent variables, prevalence, and noise ratios. The general framework of the scenarios is as 

follows; 

 

 

General Framework of the Scenarios 

 

In the study, only two-class classification problems were considered. In cases where the noise ratio is 

determined as 50% (medium), if there is a high correlation between the dependent variable and the 

independent variables, half of the variables are unrelated, while the other half is highly correlated, creating a 

mismatch in terms of correlation levels between the independent variables and the variance covariance 

matrix is not positively defined. Therefore, these scenarios were excluded from the study. 

DATA GENERATION PROCESSES  

In the data generation process, simultaneous binary and continuous variable generation procedures
 
and some 

functions in the BinNor
 
package were used.

18-20
 Only continuous independent variables were considered in 

the study. One of the important steps in this process is the creation of the correlation matrix. Since all the 

data have standard normal distribution and the dependent variable is not real discrete (dichotomous), to 

•n=20, 50, 100 Sample size 

•d=100, 500, 1000 Number of variable (dimension) 

•High (0.70-0.90) 

•Medium (0.40-0.60) 

•Low (0.10-0.30) 

Correlations between dependent 
and independent variables  

•High (0.70-0.90) 

•Medium (0.40-0.60) 

•Low (0.10-0.30) 

Correlations between independent 
variables  

•High (90%), medium (50%) Noise ratio 

•Balanced (P(X=1)=0.50), imbalanced 
(P(X=1)=0.35) 

Prevelances 

http://www.r-project.org/
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create the correlation matrix, biserial correlation for the relationships between the independent continuous 

variable and the dependent binary variable, and the Pearson correlation coefficient for the relationships 

between the continuous variables were calculated by “compute.sigma.star” function. Instead of assigning a 

fixed value for each element in the correlation matrix, a random selection is made from the relevant range for 

the correlation level determined in each iteration. The inclusion of noise ratios in the scenarios was also 

considered during the creation of the correlation matrices. Then, data were derived from the multivariate 

standard normal distribution for the number of observations and the number of variables determined based 

on this matrix. The dependent variable was transformed to categorical according to the determined 

prevalence level. The data derivation function in BinNor was not used in order to ensure that prevalence 

remains constant at the determined level at each iteration in the creation of the dependent variable.  

EVALUATION OF CLASSIFICATION PERFORMANCES 

Performance criteria are of great importance in evaluating the success of learning models. Although there are 

many different criteria in evaluating the success of learning models, accuracy and F-measure (in cases of 

imbalanced distribution) were considered within the scope of this study.
21

 The confusion matrix for binary 

classification problems is given in Table 1. 

 

TABLE 1: Confusion matrix. 
 

 
 Actual condition 

 Positive (+) Negative (-)  

Predicted Condition 
Positive (+) True positive (a) False positive (b) 

Negative (-) False negative (c) True negative (d) 

 

Accuracy is one of the most common and simple metric. It can be calculated from the confusion matrix 

as the sum of correct cells in the table (true positives and true negatives) divided by all cells in the table. 

         
   

       
 

F-measure is the harmonic mean of precision and recall. It is a better metric when there are imbalanced 

classes.   

            
                

                
 

  

      
 

 

    RESULTS 

In the case of balanced distribution and high noise levels, it is seen in Figure 1 that correlation levels 

between the independent variables do not cause a significant change in SVM performance. In parallel with 

the literature, performance increases as the number of observations increases, while performance decreases 

as the dimensions increase. It is noteworthy that when the number of dimensions is 500 and 1,000, the 

results are closer to each other. In the case of d=100, SVM is more affected by the relationship between 

dependent and independent variables. The performance variation of RFerns differs from SVM (Figure 1). 

The most prominent feature is that RFerns performed better at low number of observations (n=20). When the 

relationship between the dependent and the independent variables increases, the performance of RFerns also 

improves at low number of dimensions.  
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FIGURE 1: Classification accurary of SVM & RFerns (balanced distribution with high noise). 

SVM: Support vector machines. 
 

In the presence of medium noise (50%) and the balanced distribution, classification performances of the 

two algorithms are shown in Figure 2. It is seen that the classification performance of SVM is generally 

improved in case of the medium noise level. RFerns shows a different tendency compared to SVM in the 

conditions determined for balanced distribution with medium noise level as well as in the presence of high 

noise level. Contrary to the high noise level, it is seen that the increase in the correlation between the 

independent variables creates a slightly more pronounced effect here.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2: Classification accuracy of SVM & RFerns (balanced distribution with medium noise). 

SVM: Support vector machines. 
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The results for the scenarios created for imbalanced distribution and high noise level are given in Table 2, 

and the results for the scenarios created for imbalanced distribution and medium noise level are given in Table 3. 

When the F values are examined, it is seen that the classification performance of the SVM decreases 

considerably in the case of imbalanced distribution, contrary to what is observed in the accuracy values. On 

the other hand, it is seen that the classification performance of RFerns does not change much according to 

the balanced distribution situation and the F values are higher than SVM. 

 

TABLE 2: Classification performances (imbalanced distribution with high noise).  
 

S
am

pl
e 

si
ze

 (
n)

 

D
im

es
io

n 
(d

) 

    

Low correlation 

(Dep.&Ind.) 

Medium correlation 

(Dep.&Ind.) 

High correlation 

(Dep.&Ind.) 

Low Corr. 

(Ind.& 

Ind.) 

Medium Corr. 

(Ind.& 

Ind.) 

High Corr. 

(Ind.& 

Ind.) 

Low Corr. 

(Ind.& 

Ind.) 

Medium Corr. 

(Ind.& 

Ind.) 

High Corr. 

(Ind.& 

Ind.) 

Low Corr. 

(Ind.& 

Ind.) 

Medium Corr. 

(Ind.& 

Ind.) 

High Corr. 

(Ind.& 

Ind.) 

20
 

10
0 S

V
M

 Acc. 0.63 0.624 0.607 0.645 0.617 0.614 0.634 0.638 0.607 

F Mea. 
         

R
fe

rn
s Acc. 0.374 0.394 0.437 0.368 0.405 0.433 0.376 0.398 0.444 

F Mea. 0.498 
  

0.486 
  

0.494 0.477 
 

50
0 S

V
M

 Acc. 0.648 0.643 0.621 0.647 0.628 0.61 0.646 0.631 0.617 

F Mea. 
         

R
fe

rn
s Acc. 0.353 0.369 0.397 0.356 0.378 0.407 0.369 0.379 0.397 

F Mea. 0.486 
  

0.491 
     

1,
00

0 S
V

M
 Acc. 0.648 0.625 0.63 0.641 0.623 0.628 0.643 0.648 0.627 

F Mea. 
         

R
fe

rn
s Acc. 0.358 0.383 0.388 0.363 0.383 0.384 0.36 0.362 0.387 

F Mea. 0.485 
  

0.498 
  

0.493 0.482 0.488 

50
 

10
0 S

V
M

 Acc. 0.631 0.629 0.627 0.644 0.63 0.63 0.653 0.644 0.641 

F Mea. 0.038 0.052 0.055 0.07 0.098 0.078 0.102 0.128 0.131 

R
fe

rn
s Acc. 0.388 0.411 0.439 0.382 0.436 0.46 0.397 0.441 0.47 

F Mea. 0.525 0.508 0.486 0.52 0.526 0.507 0.523 0.523 0.51 

50
0 S

V
M

 Acc. 0.64 0.63 0.623 0.635 0.628 0.633 0.649 0.628 0.631 

F Mea. 0.012 0.02 0.044 
  

0.046 0.123 0.028 0.046 

R
fe

rn
s Acc. 0.365 0.382 0.417 0.372 0.395 0.412 0.409 0.399 0.416 

F Mea. 0.517 0.509 0.506 0.521 0.518 0.499 0.53 0.522 0.506 

1,
00

0 S
V

M
 Acc. 0.638 0.634 0.626 0.639 0.638 0.627 0.643 0.639 0.628 

F Mea. 
 

0.019 0.024 0.006 
 

0.027 
 

0.023 
 

R
fe

rn
s Acc. 0.365 0.382 0.405 0.364 0.378 0.402 0.362 0.378 0.404 

F Mea. 0.519 0.515 0.517 0.518 0.515 0.514 0.515 0.513 0.51 

10
0 

10
0 S

V
M

 Acc. 0.652 0.647 0.647 0.673 0.674 0.667 0.693 0.686 0.681 

F Mea. 0.068 0.054 0.056 0.186 0.186 0.149 0.272 0.256 0.238 

R
fe

rn
s Acc. 0.397 0.428 0.457 0.424 0.461 0.486 0.445 0.48 0.503 

F Mea. 0.519 0.502 0.483 0.534 0.518 0.509 0.543 0.539 0.518 

50
0 S

V
M

 Acc. 0.649 0.646 0.643 0.649 0.649 0.642 0.681 0.651 0.648 

F Mea. 0.013 0.021 0.024 0.021 0.025 0.032 0.248 0.039 0.034 

R
fe

rn
s Acc. 0.366 0.395 0.417 0.373 0.399 0.431 0.478 0.41 0.433 

F Mea. 0.514 0.505 0.495 0.518 0.508 0.507 0.553 0.514 0.506 

1,
00

0 S
V

M
 Acc. 0.645 0.645 0.647 0.646 0.648 0.643 0.654 0.649 0.644 

F Mea. 0.007 0.014 0.019 0.01 0.02 0.019 0.013 0.017 0.025 

R
fe

rn
s Acc. 0.363 0.384 0.404 0.364 0.386 0.413 0.359 0.387 0.413 

F Mea. 0.517 0.511 0.495 0.517 0.509 0.507 0.509 0.508 0.505 

  

 

          
 

SVM: Support vector machines. 
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TABLE 3: Classification performances (imbalanced distribution with medium noise).  
 

Sample size (n) 20 50 100 

Dimension (d) 100 500 1000 100 500 1000 100 500 1000 

Lo
w

 c
or

re
la

tio
n 

(D
ep

.&
In

d.
) 

Lo
w

 c
or

re
la

tio
n 

(I
nd

.&
In

d.
) 

S
V

M
 Acc. 0.631 0.644 0.643 0.645 0.639 0.637 0.671 0.651 0.646 

F Mea. 
   

0.097 0.027 0.015 0.181 0.059 0.026 

R
fe

rn
s Acc. 0.381 0.362 0.359 0.396 0.377 0.369 0.451 0.397 0.38 

F Mea. 0.497 0.489 0.495 0.524 0.52 0.521 0.536 0.524 0.521 

M
ed

iu
m

 

co
rr

el
at

io
n 

(I
nd

.&
In

d.
) 

S
V

M
 Acc. 0.616 0.634 0.639 0.63 0.632 0.628 0.657 0.647 0.651 

F Mea. 
   

0.09 0.045 0.027 0.143 0.053 0.038 

R
fe

rn
s Acc. 0.41 0.382 0.366 0.444 0.403 0.394 0.482 0.43 0.407 

F Mea. 
 

0.493 
 

0.526 0.518 0.524 0.53 0.516 0.509 

H
ig

h 
co

rr
el

at
io

n 

(I
nd

.&
In

d.
) 

S
V

M
 Acc. 0.615 0.619 0.622 0.627 0.625 0.629 0.65 0.644 0.646 

F Mea. 
   

0.11 0.048 0.031 0.127 0.044 0.035 

R
fe

rn
s Acc. 0.437 0.408 0.394 0.474 0.42 0.407 0.491 0.44 0.421 

F Mea. 
  

0.498 0.511 0.504 0.515 0.513 0.5 0.503 

M
ed

iu
m

 c
or

re
la

tio
n 

(D
ep

.&
In

d.
) 

Lo
w

 c
or

re
la

tio
n 

(I
nd

.&
In

d.
) 

S
V

M
 Acc. 0.65 0.643 0.635 0.684 0.643 0.638 0.755 0.672 0.654 

F Mea. 
   

0.294 0.093 0.049 0.527 0.193 0.084 

R
fe

rn
s Acc. 0.381 0.366 0.367 0.464 0.397 0.379 0.572 0.456 0.41 

F Mea. 
 

0.487 0.498 0.555 0.528 0.522 0.601 0.547 0.531 

M
ed

iu
m

 

co
rr

el
at

io
n 

(I
nd

.&
In

d.
) 

S
V

M
 Acc. 0.643 0.633 0.629 0.659 0.632 0.633 0.717 0.657 0.651 

F Mea. 
   

0.234 0.082 0.047 0.415 0.118 0.058 

R
fe

rn
s Acc. 0.428 0.393 0.389 0.51 0.431 0.404 0.572 0.479 0.438 

F Mea. 
   

0.551 0.529 0.52 0.573 0.529 0.52 

H
ig

h 
co

rr
el

at
io

n 

(I
nd

.&
In

d.
) 

S
V

M
 Acc. 0.618 0.63 0.623 0.648 0.627 0.628 0.706 0.648 0.648 

F Mea. 
    

0.091 0.049 0.353 0.089 0.051 

R
fe

rn
s Acc. 0.471 0.42 0.398 0.526 0.456 0.425 0.567 0.483 0.453 

F Mea. 
   

0.545 0.519 0.517 0.555 0.519 0.515 
 

SVM: Support vector machines. 

 

 

    DISCUSSION 

It is thought that the fact that HDLSS settings are different from classical structures is generally ignored. The 

number of observations and dimensions, the relations between dependent variable and independent variables 

are kept in the foreground, but the presence of noise variables, which is one of the most important problems 

encountered in microarray data, is mostly neglected in studies conducted with simulation applications on 

HDLSS structures in the literature.
22-25

 In this study, the effects of this neglected situation in practice have 

been tried to be observed. In order to form a step towards further studies, comprehensive scenarios were 

designed and multi-dimensional comparisons were tried to be made. Therefore, this study differs from others 

in that it considers many factors that determine data structures. 

When the classification performances are carefully examined, it is seen that SVM method, which is very 

successful and has high classification performance in classical structures, cannot be as successful as expected 

in HDLSS settings. The fact that this method is frequently preferred especially in microarray studies requires 

careful consideration in this sense.  

Considering the F measure, when the change in classification performance in the case of balanced 

distribution and imbalanced distribution is examined, it is seen that SVM is most affected by the prevalence 

change. RFerns is least affected by this situation. However, in the case of imbalanced distribution, the fact 

that the classification performances are mostly below 0.50 makes us think that these problems should be 

solved with different approaches. 
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Although many scenarios have been studied here, it is thought that this scope should be expanded with 

further studies in order to reach more general conclusions. It will be beneficial to reveal structures more 

similar to microarray data, developing scenarios where the number of dimensions is over tens of thousands. 

In addition to the dimension, it is also important to repeat the studies with different observation numbers and 

different noise levels within the scope of the HDLSS settings. Another important point is that the model 

parameters, which are default in R software, were used within the scope of this study. It is thought that 

different results can be obtained in this regard with further studies to be carried out by considering the model 

parameters. 

    CONCLUSION 

The results of the study reveal that the classification performances of machine learning algorithms, which are 

frequently used in the literature and especially encountered in classification problems with microarray data, 

show different tendencies in different HDLSS data structures. When the classification performances are 

carefully examined, it is seen that the algorithms in question -especially SVM- do not have high 

performance. However, it is noteworthy that RFerns method outperforms the others, especially in structures 

with balanced distribution and low sample size. It is thought that this method, which does not have many 

applications in the field of health, will contribute to microarray and medical imaging studies where the 

number of observations is quite low. 
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