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When examining a multivariate data, the interaction of several factors has to be recognized carefully 

and properly analysed. It is often assumed that multivariate data should follow a known specific statistical 

distribution. However, the complex structure of the data and the relationship among various factors may be 

too complicated to explain general patterns or to model dependency between variables.  
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ABSTRACT Objective: In this paper, the selection of the models 
evaluated using by three penalized regression splines; cubic splines, 

p-splines, and thin-plate splines are compared to linear models 

where the multicollinearity exists among covariates at different 
parameters and a response variable including outliers. Material 

and Methods: Generalized additive models (GAM) are extension 

of additive models as generalized linear models are to ordinary 
linear regression models. Different approaches of fitting these kinds 

of models that is the penalized regression techniques for 

representing generalized additive models are used in this study. 
Results: To examine the tolerance of the effect of multicollinearity 

and outliers and for the selection of these models and linear 

regression models, AIC and deviance are used. In all the situations, 
cubic splines regression models produced a smaller mean deviance 

in the presence of multicollinearity. On the other hand, cubic splayn 

regression models loses its dominance of producing smaller mean 
deviance when outliers are included to the data. It is remarkable 

that with the increase of sample size the number of times the p-

splines method produced a smaller deviance. Conclusion: Results 
of the simulations showed that the GAMs fitted using these 

nonparametric regression techniques are less prone to 

multicollinearity and outliers compared to their parametric 
counterparts. 
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ÖZET Amaç: Bu çalışmada, yanıt değişkeninin aykırı değer ve 
açıklayıcı değişkenler arasında farklı düzeylerde çoklu bağlantının 

varlığı söz konusu olduğunda, üç farklı regresyon splaynlarının; 

kübik splayn, p-splayn ve ince tabakalı splayn tabanlı modellerin, 
doğrusal regresyon modelleri ile karşılaştırılması ve model seçimi 

üzerinde durulmuştur. Gereç ve Yöntemler: Doğrusal regresyon 

modellerinin genelleştirilmiş doğrusal modellerin bir uzantısı 
olması gibi genelleştirilmiş toplamsal modeller de toplamsal 

modellerin bir uzantısıdır. Genelleştirilmiş toplamsal modelleri 

oluşturmak için, cezalı regresyon splaynları bu tür modellerin 
veriye uyumu için kullanılan değişik yaklaşımlardan bazıları olup 

bu çalışmada kullanılmıştır. Bulgular: Çoklu bağlantı ve aykırı 

değerin modeller üzerindeki etkilerini incelemek ve model seçimi 
yapabilmek için AIC ve sapma ölçüleri kullanılmıştır. Bütün 

durumlarda kübik splayn regresyon modelleri, çoklu bağlantı 

varlığında, diğerlerine göre daha küçük sapma değerleri elde 
etmiştir. Öte yandan, kübik splayn regresyon modelleri, veriye 

aykırı değerler dahil edildiğinde, daha küçük sapmalı model etme 

başarısını gösterememiştir. P-splayn modellerinin örnek hacmi 
artırıldığında, daha küçük sapma değerleri veren modeller elde 

etmesi dikkat çekicidir. Sonuç: Benzetim çalışması sonuçları, 

parametrik olmayan regresyon tekniklerinin, doğrusal regresyon 
modellerine göre aykırı değer ve çoklu bağlantıdan daha az 

etkilendiğini göstermiştir. 
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A complication occurring frequently in multiple regression processes is the violation of the ind e-

pendency assumption among regressors. The near linear dependencies is a particular form of data 

weakness which is called as collinearity.
1
 Generally, researchers either ignore this problem or eliminate 

one or more variables causing multicollinearity. It is, however, worth noting that by ignoring this 

problem causes incorrect findings. Some general approaches combating multicollinearity are g iven as 

collecting additional data, model respecification (create a new variable by using a function including 

nearly linearly dependent ones) and using some biased estimation methods (ridge regression, principal 

component regression etc).  

There are also other causes of model disturbances one of which is the existence of abnormal observa-

tions in the dataset which distorts the model parameters. Furthermore, this in turn may result in an inflated 

estimate of   , the residual sum of squares. In literature, some outlier-resistant GAM fitting techniques have 

been developed. Alimadad discussed a robust method of GAM fitting technique by using those derived from 

robust quasi-likelihood equations.
2
 Wong et al. proposed an M-type robust estimating technique to fit a more 

robust generalized additive model in the presence of outliers.
3
 

Nonparametric regression models allow one to fit a flexible nonlinear model to the data in order to rep-

resent the relationship between the response and predictor variables. As parametric models, nonparametric 

models are useful both for modeling and diagnosis of the nonlinear relationships.  

Generally, GAMs are computationally expensive techniques compared to the linear models due to 

the fact that they build the model by using local fits. However, different algorithms have been deve l-

oped to fit GAM models iteratively. The gam package was developed based on the work of Hastie to fit 

generalized additive models to the data of concern.
4,5

 This gam function constructs GAMs by 

combining different smoothing methods using backfitting algorithm. Another package used to fit GAM 

models is the mgcv package of Wood which employs the approach of penalized regression splines to fit 

a model.
6
 

Our aim is to investigate and compare the nonparametric and parametric models in terms of some model 

accuracy measures. Specifically, it is aimed to find the best fitting model by penalized regression splines and 

true regressors explaining the dependent variable and compare it with linear regression models.  

This study is organized as follows: We introduce generalized linear models (GLM) and Generalized 

additive models (GAM), respectively. Three penalized splines are addressed in the following sub sections. 

Model adequency measures are given next. Then, a simulation study has been conducted and concluding 

remarks are offered in the final section.  

    MATERIAL AND METHODS 

GENERALIZED LINEAR MODELS 

Generalized linear models are introduced to relax the strict assumptions of normality and homoscedasticity 

in ordinary linear regression. In GLM, distribution of response variable has to be one of the exponential 

family distributions among which are normal, binomial, exponential, gamma and Poisson.
7,8

 

The general form of GLMs is,
9,10

 

                                                (1)  

where, g is a link function which connects the systematic component, η (called linear predictor), and the 

random component (response variable) of the model.
9-12

 The expected response is then obtained as, 

                   
 
  . Here, if the response variable follows normal distribution and an identity 

link function is used, the generalized linear model turns out to be an ordinary linear regression model 

(lm).  
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GENERALIZED ADDITIVE MODELS 

When the linear predictors in GLM model given in Eq.1 are replaced with additive predictors, the model is 

called generalized additive model (GAM), thus, GAMs are regarded as extensions of GLMs.  

                                                     (2)  

The   ’s in generalized additive models are smoothing functions which can be any of kernels, local 

regression (loess) or smoothing splines. Due to the fact that GAMs can incorporate nonparametric models 

into parametric ones, they can sometimes be described as semiparametric regression models.
10

 

In GAMs, while the assumption of standard linear models of the linear dependency of   on   is relaxed, 

the additivity assumption still holds true and it is this additivity property that makes GAMs easier to interpret 

than other algorithms such as supportive vector machines (SVM), neural networks, etc.
12

  

Wood (2006) employs the approach of penalized regression spline to fit a model.
9
 By default, the degree 

of smoothness of the fit is chosen internally by the algorithm. Automatic selection of smoothing parameter is 

an advantage for reason being that it avoids the subjectivity and work of choosing it by the user. However, it 

can fail to obtain the best degree of smoothness and human intervention could sometimes be needed.
5
 

Natural Cubic Spline (Cr)  

Natural cubic splines are a special case of cubic splines where the second derivative at the two end 

points are constrained to have zero value. They are called natural due to being a solution of an optimization 

problem.
12,13

 In general, a natural cubic spline satisfies the following:  

 It interpolates the points       i.e.            

 Its second derivative at the two end points is zero;  

                     . 

 Natural cubic spline is the smoothest interpolator. If      is any continuous function on the interval 

          and has continuous first and second derivatives, and interpolates the points          then the natural 

cubic spline    ) is smoothest when it comes to minimize the roughness measure.  

        
    

  

  
        

                

  
     (3) 

Green (1995) demonstrated the smoothness of a cubic spline in his work.
13 

 

P-Splines (Ps)  

For (natural) cubic spline, there is high tendency for the columns of the model matrix    to be correlated 

for they are in someway a transformed version of the predictor variable(s).
12

 This dependency may cause 

multicollinearity or concurvity which may result in numerical instability and imprecision in the spline fit.
10,12

 

To somehow get rid off this problem, a B-spline basis which is a refined form of a cubic spline, can be 

employed. This kind of splines can be used to represent cubic splines as well as higher order splines.  

B-spline basis, a strictly local type of spline is non-zero only on the intervals between m + 3 adjacent 

knots where   + 1 is the order of the basis (i.e.   = 2 for cubic spline).
9
 In B-spline basis,  +1 knots are 

added on two sides of the specified knots so that totally there will be (  + 1) +   + (  + 1) knots. The spline 

is however, defined only on the interval   m+2     which implies that the first   + 1 and last   + 1 knots 

are arbitrary. Any spline of order   + 1 can then be represented as:  

        
      

 
          (4) 

where the B-splines can recursively be written as:  

  
     

    

         
  

       
        

           
    

                        (5) 
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P-splines, a penalty incorporated B-splines, are proposed by Eilers as a more stable version of the B-

spline bases particularly for lower rank smoothing.
14

 They are generally defined on an equidistant knots 

and used a difference penalty applied to adjacent coefficients,   , directly. For example, as given in 

Wood, if a squared difference of adjacent parameters is to be used as penalty measure, then the following 

is obtained:
9
 

             
    

   

 
   

 
 
           

           
        

  (6) 

By increasing the differences parameter, a higher order penalty can be produced. The advantage of p-

spline is that they are easy to set up and use. Additionally, they are flexible in the sense that any order of 

penalty can be incorporated to any order of B-spline basis.  

Thin Plate Splines (Ts) 

For an arbitrary spaced data       ), thin plate spline,         , is a two-dimensional interpolation 

scheme which is an extension of the natural cubic spline for one dimensional data.
15

 Splines of these types 

are good solutions for the smoothing function problem of more than one predictor variables.
9
 In thin plate 

spline, the problem of estimating a smoothing function,  , is an estimation of a surface, while in natural 

cubic spline, it is a curve estimation problem.
13

 

Green put for the general properties of the extended cubic spline in order to develop a methodology 

(thin- plate interpolant) for bivariate (for simplicity a bivariate case is used) case.
13

 The properties of the 

roughness penalty,  , for data points         can be summarized as following:  

1. If the second derivatives of   are square-integrable over   ,   is finite.  

2. If   has high local curvature,   will be large resulting in a large second derivative. Intuitively, it can 

be seen that   measures the wiggliness of     

3. Rotating the coordinates in    does not affect  .  

4. The wiggliness penalty,  , is zero if and only if   is a linear function.  

In smoothing procedure,   is used as roughness penalty and in interpolation, subjected to the 

interpolation conditions, it is used to find the natural thin-plate interpolator.
13

 Now, consider the smoothing 

function,       estimation problem in Eq.7 

                     (7) 

where    is the random error term and   is a d−vector from n (≥ d) observations          In this case, 

thin plate can be used to estimate the smoothing function,  , of the data points        , where               

(n ≥ d) by finding the function   which minimizes  

                 

where,                          
                    .     is the penalty function which 

measures the wiggliness of the smoother,  , whereas, λ is the smoothing parameter. Here, the roughness 

penalty function is given by Eq. 8 

             
  

       
 

   

   
      

   
    

                     (8) 

Here, it is important to note that thin plate splines can be used for any number of predictors.
9
 In 

addition, there is no need of specifying knot positions. On the other hand, the disadvantage of these kind of 

smoothers is their being computational expensive; there are as many parameters to be estimated as there are 

data points.
15
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SELECTION OF GAM 

Model evaluation plays a fundamental role in regression analysis; comparisons can be made between models 

to obtain the better of them. In linear regression, mean square error (MSE) is regarded as the building blocks 

of most model evaluation techniques and inferences made for it measures how far the model estimations 

from the actual observations are. In GLMs and GAMs, it is necessary to have a quantity which is equivalent 

in importance and interpretation to residual sum of squares for ordinary linear modeling.
9
 

As minimizing MSE is to least square fits, in models fitted using maximum likelihood estimation 

(MLE), the quantity to be minimized is the deviance. Maximizing the likelihood in those  

models corresponds to minimizing the deviance of the model.
16

 Model deviance is defined as  

twice the difference in log-likelihood between the saturated model and the full model (model of 

interest).
8,17-19

  

Model deviance is defined as twice the difference in log-likelihood between the saturated model and the 

full model: 

                            (9) 

                                 

 

   

 

where          is maximum likelihood of the saturated model: the model which have separate parameter 

for each observation aand a perfect fit     .     and      respectively the maximum likelihood estimated of 

canonical parameters. Deviance of a model can be regarded as the lack of fit between the model and the 

data points. It is used for model adequacy checking; the smaller the deviance the better the model is.  

MONTE CARLO SIMULATIONS 

In this section, a simulation study is conducted in order to illustrate the performance of three generalized ad-

ditive models using thin-plate spline, cubic spline and p-spline and a linear model (lm) when fitted to data 

set suffering from multicollinearity and outliers. To achieve the desired degrees of collinearity, the 

explanatory variables are generated in the following order.
19,20

 First, independent standard normal pseudo 

random numbers,     for          and        , were generated. Then, Eq. (10) was used to generate a 

total of four covariates with a specified degree of linear relationship.  

                                                           (10) 

The value of   is specified so that the correlation between any two covariates will approximately be 

equal to   . Three different degrees of multicollinearity (  = 0.9, 0.99, 0.999) were considered (McDonald 

1975).
19

 The response variable is then generated as follows:  

                                        (11) 

where ε is the error term which is i.i.d. generated from N(0,1). The inclusion of outliers was achieved by 

randomly selecting 10% of response values and multiplying them by 20 in order to inflate them in their 

absolute values.  

In order to explore the behavior of the models, 500 samples were simulated for each of sample sizes of 

50, 100, and 500 and the average deviance and AIC values for each model was recorded. It is important to 

note that a sample size less than 50 could not be used since the number of parameters of the generalized 

additive models would exceed the sample size. 

The followings present the results from simulation studies implemented in R Software (packages: ridge, 

mgcv) with only multicollinearity and with multicollinearity and outliers, respectively.
9,21,22 
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    RESULTS 

PERFORMANCE OF MODELS IN THE PRESENCE OF MULTICOLLINEARITY  

Table 1 presents the VIF values of the explanatory variables including for four different values of  . For   = 

.8, it is shown that the simulated data do not suffer from multicollinearity, hence, higher values of   were 

used.  
 

TABLE 1: VIF values when n=100 

              

0.8 2.3 2.3 2.1 2.0 

0.9 5.5 4.7 6.4 5.4 

0.99 40.0 49.6 37.9 47.7 

0.999 347.5 341.8 396.6 309.7 

 

Deviance and AIC values of models for the three different degrees of collinearity are presented in 

Table 2. The results in all the cases show that linear model produced a higher deviance and AIC values 

compared to models fitted using the three spline techniques. From the results of this simulation 

experiment, it is clear that generalized additive models are more tolerant to the effects of multicollinearity 

than linear models.  

 

TABLE 2: Average deviance and AIC values of models fitted to data with multicollinearity. 

 Criteria lm cr ps tp 

n=50 

  =0.9 

AIC 

Deviance 

147.82 

45.21 

140.84 

31.67 

142.85 

35.45 

143.08 

36.52 

n=50 

  =0.99 

AIC 

Deviance 

147.82 

45.21 

141.88 

33.33 

144.27 

37.66 

144.52 

38.37 

n=50 

  =0.999 

AIC 

Deviance 

147.82 

45.21 

142.74 

37.03 

144.91 

40.39 

145.71 

41.19 

n=100 

  =0.9 

AIC 

Deviance 

289.99 

95.26 

286.59 

83.34 

286.98 

86.24 

286.88 

87.10 

n=100 

  =0.99 

AIC 

Deviance 

290.00 

95.27 

287.56 

85.47 

287.98 

88.22 

288.02 

88.86 

n=100 

  =0.999 

AIC 

Deviance 

290.01 

95.28 

287.71 

88.03 

288.40 

90.24 

288.73 

91.54 

n=500 

  =0.9 

AIC 

Deviance 

1422.01 

492.36 

1419.89 

481.22 

1419.83 

482.40 

1419.5 

483.8 

n=500 

  =0.99 

AIC 

Deviance 

1422.03 

492.38 

1420.64 

482.38 

1420.62 

484.04 

1420.44 

485.67 

n=500 

  =0.999 

AIC 

Deviance 

1422.03 

492.38 

1421.35 

483.68 

1421.19 

485.31 

1421.01 

488.52 

 

 

The simulation results presented in Table 2 show that, regardless of the sample sizes or  

 , cubic splines produced the smallest deviance and AIC values. For n=50 the mean deviance is obtained by 

cubic splines model among others. This results holds for all models when   increseas. The impact of 

doubling the sample size produced the cubic splines model with least mean deviance for all  . Also for =500 
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and high multicollinearity, the cubic splines model obtained the lowest mean deviance. This is explicitly 

demonstrated in Figure 1a-c.  

 

                                a) n=50             b) n=100    c) n=500 

FIGURE 1: Average deviances when only multicollinearity exists. 

 

 

PERFORMANCE OF MODELS IN THE PRESENCE OF MULTICOLLINEARITY AND OUTLIERS  

A randomly selected 10% of the   values of the simulated data used in section 4 were multiplied by 20 so 

that they will be extreme values. It is clear from Figure 2 that the data includes some outliers.  

 

 
FIGURE 2: Influential observations by Cook’s distance when   = 0.999 and n=100 

 

 

The average deviance and AIC values of the fitted models from simulations that suffers from 

multicollinearity and outliers are provided in Table 3.  
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TABLE 3. Average deviance and AIC values of models fitted to data with multicollinearity and outliers. 

 Criteria lm cr ps tp 

n=50 

  =0.9 

AIC 

Deviance 

607.08 

517272 

578.92 

208930.1 

566.75 

184011.1 

573 

213666 

n=50 

  =0.99 

AIC 

Deviance 

614.39 

593280.6 

584.38 

248307.2 

573.26 

220846.3 

586.08 

282187.8 

n=50 

  =0.999 

AIC 

Deviance 

615.25 

601828.5 

589.04 

291836.2 

577.19 

253975.4 

588.39 

335633.1 

n=100 

  =0.9 

AIC 

Deviance 

1211.6 

1039693 

1189.14 

690920.8 

1172.27 

571711.2 

1179.48 

615236.8 

n=100 

  =0.99 

AIC 

Deviance 

1225.08 

1187865 

1203.33 

788311.3 

1183.77 

639734.5 

1192.56 

701328.9 

n=100 

  =0.999 

AIC 

Deviance 

1226.51 

1204589 

1207.05 

825424.8 

1188.04 

685864.1 

1199.26 

795739 

n=500 

  =0.9 

AIC 

Deviance 

6085.46 

5605144 

6062.31 

5141729 

6024.89 

4651736 

6047.53 

4913665 

n=500 

  =0.99 

AIC 

Deviance 

6149.24 

6366311 

6129.21 

5880103 

6087.86 

5271732 

6113.98 

5620942 

n=500 

  =0.999 

AIC 

Deviance 

6155.27 

6443169 

6137.6 

5971687 

6099.1 

5421672 

6125.21 

5809956 

 

According to the performance results, the models fitted by using cubic splines were found to be the least 

advantageous whereas the models fitted by using p-splines produced a smaller average deviance and AIC 

under different samples sizes and some degree of linear relatisonship. In other words, the smallest deviance 

and AIC values were obtained from the models fitted by p-splines.  

Figure 3 clearly demonstrates the performance differences of the four models considered in this paper. 

Figure 3a represents the results for n=50 whereas Figure 3b and Figure 3c show the results for n=100 and 

n=500, respectively. More essentially, it is demonstrated that the mean deviance of all the models increased 

with the increase of the degree of linear relationship provided when sample size n is kept fixed.  

   

                                 a) n=50                 b) n=100   c) n=500 

FIGURE 3: Average deviance when data suffers from both mutlicollinearity and outliers. 

 

It is worth noting that with the increase of sample size, the dominance of the p-spline method increased. 

On the other hand, cubic regression loses its dominance of producing smaller average deviance when outliers 

are included to the data.  
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    CONCLUSION 

In this paper, we apply GAM models which were more resistant to outliers for the data sets suffering from 

multicollinearity and outliers. First, three penalized regression spline smoothers are evaluated in fitting 

generalized additive models for simulated datasets which contain outliers in the response variable and have 

predictor variables with linear relationship among them. The first is cubic splines, a curve made up of 

sections of cubic polynomials which are joined together and are continuous up to the second derivatives. 

Another is the p-splines, which is fitted using B-splines with penalty. With cubic or p-splines, on top of 

defining the basis functions, knots have to be specified in order to operate the fitting procedure. The third is 

the thin-plate splines which avoids the selection of basis functions and specifying knots positions. The 

results show that cubic regression outperformed both p-spline and thin plate spline in the sense of producing 

smaller mean deviance when multicollinearity exist among covariates. However, the models fitted using p-

splines produced smaller average deviance and AIC when multicollinearity and outliers both exist.  

This paper also presents explanations of parametric and nonparametric statistical evaluations for the se-

lection of the best fit models. The results of this research are a valuable tool to make the predictions from a 

generalized additive model using p-splines when the data set is suffering from outlier and multicollinearity.  

By way of conclusion, the results would seem to demonstrate that penalized smoothing splines can be 

used instead of generalized linear models when multicollinearity and outliers are present in the dataset.  
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