İnflamasyon, canlının her türlü yaralanmaya karşı verdiği olağan bir tepkidir. Bir dizi biyokimyasal olayı içeren, hücresel hasar tarafından tetiklenen, kızarıklık, ısı artışı, şişlik, ağrı ve fonksiyon kaybı ile karakterize, karmaşık bir doku reaksiyonudur. İnflamasyonun gerçekleştiği durumda canlıda hasarlı doku onarılmakta ve yeniden şekillenmektedir. İnflamasyon, organizma tarafından zararlı uyaranları ortadan kaldırmak için alınan koruyucu bir önlem olsa da kontrolsüz olduğu durumda hasara yol açmaktadır. Kontrol altına alınamayan inflamasyon romatoid artrit, diyabet, kanser, nörodejeneratif hastalıklar (Alzheimer vb.) ve aterosklerozun yanı sıra pulmoner, otoimmün ve kardiyovasküler hastalıkların gelişmesine neden olmaktadır. İnflamasyonun kontrol altına alınması için, antiinflamatuar etkili ilaçlar kullanılmaktadır. İnflamatuar, sürece müdahale edebilen antiinflamatuar ilaçlar tedavide önemlidir. Mevcut antiinflamatuar ilaçların yan etkilerinin ve maliyetlerinin fazla olması gibi olumsuzluklar, araştırmacıları yeni alternatif ilaç araştırmalarına yönlendirmektedir. Antiinflamatuar etkili olduğu düşünülen ajanın etkisinin değerlendirilmesinde ilk aşama olarak in vitro ve ardından in vivo yöntemler sıklıkla kullanılmaktadır. İn vitro yöntemler arasında en sık sitokinlerin miktar tayini, Western Blot analizi ve hücre içi oksidatif stres tayin yöntemleri kullanılırken, in vivo yöntemlerden ise karragenan ile oluşturulmuş pençe ödemi ve kroton yağı ile oluşturulmuş kulak ödemi deney modellerinin kullanıldığı görülmektedir. Bu derlemede, genç araştırmacılara yol gösterici olacağı düşünülerek, antiinflamatuar etkinin değerlendirilmesinde kullanılan in vitro ve in vivo yöntemler ile ilgili bilgiler sunulmuştur.
Anahtar Kelimeler: İnflamasyon; antiinflamatuar ajanlar; sitokinler
Inflammation is a normal response of an organism to any injury. It is a complex tissue reaction involving a series of biochemical events, triggered by cellular damage and characterized by redness, warmth, swelling, pain and loss of function. Damaged tissue is repaired and reshaped. When inflammation occurs, damaged tissue in a living organism is repaired and remodeled. While inflammation is a protective measure taken by the body to eliminate harmful stimuli, it can cause damage if left uncontrolled. Uncontrolled inflammation is causes of rheumatoid arthritis, diabetes, neurodegenerative diseases (Alzheimer's disease, etc), cancer and atherosclerosis, as well as pulmonary, autoimmune, and cardiovascular diseases. Anti-inflammatory drugs are used to control inflammation. Anti-inflammatory drugs that can interfere with the inflammatory process are important in treatment. Disadvantages such as the high cost and side effects of the current anti-inflammatory drugs lead researchers to search for new alternative drugs. in vitro and in vivo methods are frequently used as the first step in evaluating the effect of the agent thought to be anti-inflammatory. Among the in vitro methods, the most frequently used methods are cytokine quantification, Western Blot analysis and intracellular oxidative stress determination, while among the in vivo methods, carrageenan-induced paw edema and croton oil-induced ear edema experimental models are used. In the present review, information about in vitro and in vivo methods used in the evaluation of anti-inflammatory effect is given, considering that it will guide to young researchers.
Keywords: Inflammation; anti-inflammatory agents; cytokines
- Debnath T, Kim DH, Lim BO. Natural products as a source of anti-inflammatory agents associated with inflammatory bowel disease. Molecules. 2013;18(6):7253-70. [Crossref] [PubMed] [PMC]
- Patil KR, Mahajan UB, Unger BS, Goyal SN, Belemkar S, Surana SJ, et al. Animal models of inflammation for screening of anti-inflammatory drugs: implications for the discovery and development of phytopharmaceuticals. Int J Mol Sci. 2019;20(18):4367. [Crossref] [PubMed] [PMC]
- Megha KB, Joseph X, Akhil V, Mohanan PV. Cascade of immune mechanism and consequences of inflammatory disorders. Phytomedicine. 2021;91:153712. [PubMed] [PMC]
- Gupta M, Singh N, Gulati M, Gupta R, Sudhakar K, Kapoor B. Herbal bioactives in treatment of inflammation: an overview. S Afr J Bot. 2021;143:205-25. [Link]
- El Nashar HAS, Mostafa NM, Eldahshan OA, Singab ANB. A new antidiabetic and anti-inflammatory biflavonoid from Schinus polygama (Cav.) Cabrera leaves. Nat Prod Res. 2022;36(5):1182-90. [Crossref] [PubMed]
- Anosike CA, Ako AC, Nwodo OFC. Anti-inflammatory and membrane stabilization activities of methanol extract of Cissus aralioides leaves. Res J Pharm Biol Chem Sci. 2018;9(4):18-28. [Link]
- Singh S, Devi B. Anti-inflammatory activity of Cucumis melo L. subsp. agrestis (Naudin) Pangalo. Int J Pharm Sci Res. 2020;11(8):3819-23. [Crossref]
- Heydari H, Saltan Işcan G, Eryilmaz M, Bahadir Acikara Ö, Yilmaz Sarialtin S, Tekin M, et al. Antimicrobial and anti-inflammatory activity of some Lathyrus L. (Fabaceae) species growing in Turkey. Turk J Pharm Sci. 2019;16(2):240-5. [PubMed] [PMC]
- Sato H, Taketomi Y, Murakami M. Metabolic regulation by secreted phospholipase A2. Inflamm Regen. 2016;36:7. [PubMed] [PMC]
- Lehr M. Phospholipase A2 inhibitors in inflammation. Expert Opin Ther Pat. 2001;11 (7):1123-36. [Crossref]
- Mohamed Tap F, Abd Majid FA, Ismail HF, Wong TS, Shameli K, Miyake M, et al. In Silico and in vitro study of the bromelain-phytochemical complex inhibition of phospholipase A2 (Pla2). Molecules. 2018;23(1):73. [Crossref] [PubMed] [PMC]
- Nguyen HT, Vu TY, Chandi V, Polimati H, Tatipamula VB. Dual COX and 5-LOX inhibition by clerodane diterpenes from seeds of Polyalthia longifolia (Sonn.) Thwaites. Sci Rep. 2020;10(1):15965. [Link]
- Azad R, Babu NK, Gupta AD, Reddanna P. Evaluation of anti-inflammatory and immunomodulatory effects of Premna integrifolia extracts and assay-guided isolation of a COX-2/5-LOX dual inhibitor. Fitoterapia. 2018;131:189-99. [Link]
- Rajaram A, Vanaja GR, Vyakaranam P, Rachamallu A, Reddy GV, Anilkumar K, et al. Anti-inflammatory profile of Aegle marmelos (L) Correa (Bilva) with special reference to young roots grown in different parts of India. J Ayurveda Integr Med. 2018;9(2):90-8. [PubMed] [PMC]
- Nesargikar PN, Spiller B, Chavez R. The complement system: history, pathways, cascade and inhibitors. Eur J Microbiol Immunol (Bp). 2012;2(2):103-11. [Crossref] [PubMed] [PMC]
- Ding X, Qamar A, Liu H. The complement system testing in clinical laboratory. Clin Chim Acta. 2023;541:117238. [PubMed]
- Markiewski MM, Lambris JD. The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am J Pathol. 2007;171(3):715-27. [Crossref] [PubMed] [PMC]
- Sarma JV, Ward PA. The complement system. Cell Tissue Res. 2011;343(1):227-35. [PubMed] [PMC]
- Moon HI, Jung S, Lee YC, Lee JH. Anticomplement activity of isolated compounds from Artemisia montana. Immunopharmacol Immunotoxicol. 2012;34(1):113-5. [Crossref] [PubMed]
- Tasneem S, Liu B, Li B, Choudhary MI, Wang W. Molecular pharmacology of inflammation: medicinal plants as anti-inflammatory agents. Pharmacol Res. 2019;139:126-40. [Crossref] [PubMed]
- Xu J, Zhao Y, Aisa HA. Anti-inflammatory effect of pomegranate flower in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Pharm Biol. 2017;55(1):2095-101. [Crossref] [PubMed] [PMC]
- Song MY, Jung HW, Kang SY, Kim KH, Park YK. Anti-inflammatory effect of Lycii radicis in LPS-stimulated RAW 264.7 macrophages. Am J Chin Med. 2014;42(4):891-904. [PubMed]
- Zargar OA, Bashir R, Ganie SA, Hamid R. The effect of Elsholtzia densa methanolic extract modulates inflammation in vitro and in vivo. Orient Pharm Exp Med. 2019;19(1):49-58. [Crossref]
- Dogan Z, Telli G, Tel BC, Saracoglu I. Scutellaria brevibracteata Stapf and active principles with anti-inflammatory effects through regulation of NF-κB/COX-2/iNOS pathways. Fitoterapia. 2022;158:105159. [Crossref] [PubMed]
- Özbilgin S, Küpeli Akkol E, Süntar I, Tekin M, Saltan İşcan G. Wound-healing activity of some species of Euphorbia L. Rec Nat Prod. 2018;13(2):104-13. [Link]
- Kumar A, Kour G, Chibber P, Saroch D, Kumar C, Ahmed Z. Novel alantolactone derivative AL-04 exhibits potential anti-inflammatory activity via modulation of iNOS, COX-2 and NF-κB. Cytokine. 2022;158:155978. [PubMed]
- Abdel Maksoud MS, El Gamal MI, Gamal El Din MM, Choi Y, Choi J, Shin JS, et al. Synthesis of new triarylpyrazole derivatives possessing terminal sulfonamide moiety and their inhibitory effects on PGE₂ and nitric oxide productions in lipopolysaccharide-induced RAW 264.7 macrophages. Molecules. 2018;23(10):2556. [PubMed] [PMC]
- Achoui M, Appleton D, Abdulla MA, Awang K, Mohd MA, Mustafa MR. In vitro and in vivo anti-inflammatory activity of 17-O-acetylacuminolide through the inhibition of cytokines, NF-κB translocation and IKKβ activity. PLoS One. 2010;5(12):e15105. [Crossref] [PubMed] [PMC]
- Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2017;9(6):7204-18. [Crossref] [PubMed] [PMC]
- Wagner EF, Nebreda AR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 2009;9(8):537-49. [Crossref] [PubMed]
- Lu N, Malemud CJ. Extracellular signal-regulated kinase: a regulator of cell growth, inflammation, chondrocyte and bone cell receptor-mediated gene expression. Int J Mol Sci. 2019;20(15):3792. [PubMed] [PMC]
- Zhang CH, Sheng JQ, Sarsaiya S, Shu FX, Liu TT, Tu XY, et al. The anti-diabetic activities, gut microbiota composition, the anti-inflammatory effects of Scutellaria-coptis herb couple against insulin resistance-model of diabetes involving the toll-like receptor 4 signaling pathway. J Ethnopharmacol. 2019;237:202-14. [PubMed]
- Chen YX, Zhang XQ, Yu CG, Huang SL, Xie Y, Dou XT, et al. Artesunate exerts protective effects against ulcerative colitis via suppressing Toll‑like receptor 4 and its downstream nuclear factor‑κB signaling pathways. Mol Med Rep. 2019;20(2):1321-32. [PubMed] [PMC]
- Gao H, Kang N, Hu C, Zhang Z, Xu Q, Liu Y, et al. Ginsenoside Rb1 exerts anti-inflammatory effects in vitro and in vivo by modulating toll-like receptor 4 dimerization and NF-kB/MAPKs signaling pathways. Phytomedicine. 2020;69:153197. [PubMed]
- Jalali M, Zaborowska J, Jalali M. The polymerase chain reaction: PCR, qPCR and RT-PCR. In Basic Science Methods for Clinical Researchers. 1st ed. London: Academic Press; 2016. p.1-15. [Crossref] [PubMed]
- Dymond JS. Explanatory chapter: quantitative PCR. Methods Enzymol. 2013;529:279-89. [PubMed]
- Nolan T, Hands RE, Bustin SA. Quantification of mRNA using real-time RT-PCR. Nat Protoc. 2006;1(3):1559-82. [PubMed]
- Chatterjee S. Oxidative stress inflammation and disease. Dziubla T, Butterfield A. Oxidative Stress and Biomaterials. 1st ed. London: Academic Press.; 2016. p.35-58. [Crossref] [PubMed]
- Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5(1):9-19. [Crossref] [PubMed] [PMC]
- Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem. 2015;97:55-74. [Crossref] [PubMed]
- Shahreza FD. Oxidative stress, free radicals, kidney disease and plant antioxidants. Immunopathol Persa. 2017;3(2):e11. [Crossref] [PubMed]
- Ighodaro OM, Akinloye O. A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex J Med. 2018;54(4):287-93. [Link]
- Yilgor A, Demir C. Determination of oxidative stress level and some antioxidant activities in refractory epilepsy patients. Sci Rep. 2024;14(1):6688. [Crossref] [PubMed] [PMC]
- Cordiano R, Di Gioacchino M, Mangifesta R, Panzera C, Gangemi S, Minciullo PL. Malondialdehyde as a potential oxidative stress marker for allergy-oriented diseases: an update. Molecules. 2023;28(16):5979. [Crossref] [PubMed] [PMC]
- Krishna H, Avinash K, Shivakumar A, Al Tayar NGS, Shrestha AK. A quantitative method for the detection and validation of catalase activity at physiological concentration in human serum, plasma and erythrocytes. Spectrochim Acta A Mol Biomol Spectrosc. 2021;251:119358. [Crossref] [PubMed]
- Mei S, Song X, Wang Y, Wang J, Su S, Zhu J, et al. Studies on protection of astaxanthin from oxidative damage induced by H2O2 in RAW 264.7 cells based on 1H NMR metabolomics. J Agric Food Chem. 2019;67(49):13568-76. [Crossref] [PubMed]
- Zhang L, Zhang H, Li X, Jia B, Yang Y, Zhou P, et al. Miltirone protects human EA.hy926 endothelial cells from oxidized low-density lipoprotein-derived oxidative stress via a heme oxygenase-1 and MAPK/Nrf2 dependent pathway. Phytomedicine. 2016;23(14):1806-13. [Crossref] [PubMed]
- Su J, Zhang X, Kan Q, Chu X. Antioxidant activity of acanthopanax senticosus flavonoids in H2O2-induced RAW 264.7 cells and dss-induced colitis in mice. Molecules. 2022;27(9):2872. [Crossref] [PubMed] [PMC]
- Zhang X, Retyunskiy V, Qiao S, Zhao Y, Tzeng CM. Alloferon-1 ameliorates acute inflammatory responses in λ-carrageenan-induced paw edema in mice. Sci Rep. 2022;12(1):16689. [Crossref] [PubMed] [PMC]
- Karim N, Khan I, Khan W, Khan I, Khan A, Halim SA, et al. Anti-nociceptive and anti-inflammatory activities of asparacosin a involve selective cyclooxygenase 2 and inflammatory cytokines inhibition: an in-vitro, in-vivo, and in-silico approach. Front Immunol. 2019;10:581. [Crossref] [PubMed] [PMC]
- Bidian C, Filip GA, David L, Moldovan B, Baldea I, Olteanu D, et al. Viburnum opulus fruit extract-capped gold nanoparticles attenuated oxidative stress and acute inflammation in carrageenan-induced paw edema model. GCLR. 2022;15(2):319-35. [Crossref] [PubMed]
- Sarkhel S. Evaluation of the anti-inflammatory activities of Quillaja saponaria Mol. saponin extract in mice. Toxicol Rep. 2015;3:1-3. [Crossref] [PubMed] [PMC]
- Ben IO, Gamey LE, Harley BK, Agyei PEO, Woode E. Effect of Trichilia monadelpha (Thonn.) J. J. de Wilde (Meliaceae) extracts on C-reactive proteins levels and acute inflammation. Sci Afr. 2022;16:e01119. [Crossref] [PubMed]
- Branco ACCC, Yoshikawa FSY, Pietrobon AJ, Sato MN. Role of histamine in modulating the immune response and inflammation. Mediators inflamm. 2018;2018:9524075. [Crossref] [PubMed] [PMC]
- Pirahanchi Y, Sharma S. Physiology, Bradykinin. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. Available from: [Link]
- Patel MMurugananthan, Shivalinge Gowda KP. In vivo animal models in preclinical evaluation of antiinflammatory activity-A review. IJPRAS. 2012;1(2):1-5. [Link]
- Rachmawati H, Safitri D, Pradana AT, Adnyana IK. TPGS-stabilized curcumin nanoparticles exhibit superior effect on carrageenan-induced inflammation in Wistar Rat. Pharmaceutics. 2016;8(3):24. [Crossref] [PubMed] [PMC]
- Leitão MM, Radai JAS, Ferrari IC, Negrão FJ, Silva Filho SE, Oliveira RJ, et al. Effects of an ethanolic extract and fractions from Piper glabratum (Piperaceae) leaves on pain and inflammation. Regul Toxicol Pharmacol. 2020;117:104762. [Crossref] [PubMed]
- Sadeghi H, Parishani M, Akbartabar Touri M, Ghavamzadeh M, Jafari Barmak M, Zarezade V, et al. Pramipexole reduces inflammation in the experimental animal models of inflammation. Immunopharmacol Immunotoxicol. 2017;39(2):80-6. [Crossref] [PubMed]
- Tubaro A, Dri P, Delbello G, Zilli C, Della Loggia R. The croton oil ear test revisited. Agents Actions. 1986;17(3-4):347-9. [Crossref] [PubMed]
- Camponogara C, Casoti R, Brusco I, Piana M, Boligon AA, Cabrini DA, et al. Tabernaemontana catharinensis leaves exhibit topical anti-inflammatory activity without causing toxicity. J Ethnopharmacol. 2019;231:205-16. [Crossref] [PubMed]
- Hijazy HHA, Dahran N, Althagafi HA, Alharthi F, Habotta OA, Oyouni AAA, et al. Thymoquinone counteracts oxidative and inflammatory machinery in carrageenan-induced murine paw edema model. Environ Sci Pollut Res Int. 2023;30(6):16597-611. [Crossref] [PubMed]
- Li CW, Wu XL, Zhao XN, Su ZQ, Chen HM, Wang XF, et al. Anti-inflammatory property of the ethanol extract of the root and rhizome of Pogostemon cablin (Blanco) Benth. Sci World J. 2013;2013:434151. [Crossref] [PubMed] [PMC]
- Ratnasooriya WD, Jayakody JR, Handunnetti SM, Ratnasooriya CD, Weerasekera KR. Antiinflammatory activity of hot water infusion of nyctanthes arbo-tristis flowers. Indian J Pharm Sci. 2015;77(5):613-9. [Crossref] [PubMed] [PMC]
- Hassan S, Sajjad N, Khan SU, Gupta S, Bhat MA, Ali R, et al. Dipsacus inermis wall. modulates inflammation by inhibiting NF-κB pathway: an in vitro and in vivo study. J Ethnopharmacol. 2020;254:112710. [Crossref] [PubMed]
- Mayovi AA, Alabi AO, Oyibo AO, Joseph OO. Antioedematogenic and anti-inflammatory actions of Phragmanthera incana (Schum) Balle leaf in carrageenan-induced inflammation models in rats. Adv Tradit Med. 2021;21(4):701-11. [Crossref] [PubMed]
- Ahn JH, Park YL, Song AY, Kim WG, Je CY, Jung DH, et al. Water extract of Artemisia scoparia Waldst. & Kitam suppresses LPS-induced cytokine production and NLRP3 inflammasome activation in macrophages and alleviates carrageenan-induced acute inflammation in mice. J Ethnopharmacol. 2021;268:113606. [Crossref] [PubMed]
- Ashok P, Koti BC, Thippeswamy AH, Tikare VP, Dabadi P, Viswanathaswamy AH. Evaluation of antiinflammatory activity of centratherum anthelminticum (L) kuntze seed. Indian J Pharm Sci. 2010;72(6):697-703. [Crossref] [PubMed] [PMC]
- Alhadidi KM, Ahmed ZA, Numan IT, Hussain SA. Dose-dependent anti-inflammatory effect of silymarin in experimental animal model of chronic inflammation. Afr J Pharm Pharmacol. 2009;3(5):242-7. [Link]
- Ariyo OO, Ajayi AM, Ben Azu B, Aderibigbe AO. Anti-nociceptive and anti-inflammatory activities of ethanol extract and fractions of Morus mesozygia Stapf (Moraceae) leaves and its underlying mechanisms in rodents. J Ethnopharmacol. 2020;259:112934. [Crossref] [PubMed]
- Nascimento WM, Oliveira JRS, Cunha RX, Gambôa DSR, Silva APS, Lima VLM. Evaluation of the treatment of fever, pain and inflammation with Indigofera suffruticosa Miller Leaves Aqueous Extract. J Ethnopharmacol. 2022;287:114958. [Crossref] [PubMed]
- Hussain T, Tan B, Yin Y, Blachier F, Tossou MC, Rahu N. Oxidative stress and inflammation: what polyphenols can do for us? Oxid Med Cell Longev. 2016;2016:7432797. [Crossref] [PubMed] [PMC]
- Huang SS, Chiu CS, Lin TH, Lee MM, Lee CY, Chang SJ, et al. Antioxidant and anti-inflammatory activities of aqueous extract of Centipeda minima. J Ethnopharmacol. 2013;147(2):395-405. [Crossref] [PubMed]
- Patro G, Bhattamisra SK, Mohanty BK, Sahoo HB. In vitro and in vivo antioxidant evaluation and estimation of total phenolic, flavonoidal content of mimosa pudica L. Pharmacognosy Res. 2016;8(1):22-8. [Crossref] [PubMed] [PMC]
- Agrawal M, Bansal S, Chopra K. Evaluation of the in vitro and in vivo antioxidant potentials of food grade Phycocyanin. J Food Sci Technol. 2021;58(11):4382-90. [Crossref] [PubMed] [PMC]
.: İşlem Listesi